

3806

How To
 Use This Guide

This Gas Mileage Guide gives information on the relative fuel economy performance of 1978 model year cars, station wagons, and light trucks. The estimates are expressed in terms of miles per gallon measured by standardized EPA fuel economy tests. These estimates allow you to compare the relative fuel economy efficiency of 1978 model year cars; these estimated DO NOT MEAN that you will get the same milleage in these cars. The mileage that you will get will depend to a large degree on where you drive-city versus country, mountains versus flat terrain, cold versus mild climate-and your personal driving habits.

These 1978 models were certified by EPA as of January 23, 1978.

All new car dealers are required to prominently display and have available copies of this Guide in their showrooms.

How The Guide is Organized

To help you compare the fuel economy of similarsized vehicles, passenger cars and station wagons are grouped into classes according to their interior size, an important measure of vehicle utility. This means that vehicies that are approximately the same size inside will be in the same class. Trucks are grouped by their capacity, in terms of gross vehicle weight rating.

Car Classes

Two-Seater-Cars designed primarily to seat only two adults (page 23).

Sedans

Minicompact-Less than 85 cubic feet of passenger and luggage volume (pages 10-11).
Subcompact-Between 85 to 100 cubic feet of passenger and luggage volume (pages 12-14).

Compact-Between 100 to 110 cubic feet of passenger and luggage volume (pages 15-17). Mid-Size-Between 110 to 120 cubic feet of passenger and luggage volume (pages 18-20).

Large-More than 120 cubic feet of passenger and luggage volume (pages 21-22).

Station Wagons

Small-Less than 130 cubic feet of passenger and cargo volume (pages 24-25).

Mid-Size-Between 130 and 160 cubic feet of passenger and cargo volume (pages 26-27).

Large- 160 or more cubic feet of passenger and cargo volume (page 28).

Truck Classes

Small Pickups-Trucks having Gross Vehicle Weight Ratings (truck weight plus carrying capacity) under 4500 pounds (page 29).

Standard Pickups-Trucks having GVWR's of 4500 to 6000 pounds (pages 29-30). Vans-(page 31).
Special Purpose Trucks-All other light trucks (page 32).

In each size class, you will find the following information for every model type: Manufacturer and Car Line Names
The manufacturers are listed alphabetically. Under each manufacturer, the car lines are listed alphabetically.

Fuel Economy and Fuel Cost Estimates

Clity fuel economy reflects trips for local errands, driving to work, and general stop-and-go driving in urban and suburban areas. Highway fuel economy reflects non-stop driving on rural roads at a speed averaging about 50 mph . The combined fuel economy estimate is a weighted average of city and highway estimates. It assumes slightly over half city and under half highway driving, which is about the average U.S. driving pattern, according to the Federal Highway Administration.
All values reflect the performance of a wellmaintained car in warm weather driving on dry level roads after the car has been broken in.

The fuel cost is based on the combined mpg and estimates what you would pay for fuel in 1 year if you drive 15,000 miles and pay 70 cents per gallon for gasoline (or 60 cents per gallon for diesel fuel). Check the Fuel Cost Chart for additional information on relative yearly fuel costs at different prices per gallon.

Vehicle Description

Each line in the Guide shows an enginetransmission combination available within the listed car line identified by the following designation:

Engine Size-Listed by cubic inch displacement (CID), liters (L), or cubic centimeters (CC).

Number of Cylinders or Rotors-Differentiates between 4, 5, 6, 8, and 12 cylinder engines or 1 and 2 rotors.

Engine Type-When engine size and number of cylinders are not an adequate description of an engine, the following engine type designations will also be given:

TURBO	Turbocharged engine
DIESEL	
ROTARY	Resel engine

CVCC Compound vortex control combustion engine (stratified charge)
Check with your dealer and check the fuel economy label prior to purchase for information on the exact engine with which these vehicles will be equipped.

Transmission-"A" for automatic and " M " for manual.

Fuel System-"FI" for fuel injection or the number of barrels in the carburetor.

Interior Volume Index-The interior volume index is listed for each body style: 2-door (2-DR),

4-door (4-DR), and hatchback (HTBK). The Interior Volume index is one way of estimating the space in a car. t is based on four measurements-head room, hip room, leg room, and shoulder roomfor the front and rear seats, as well as trunk capacity. The interior Volume Index is given as two numbers (in cubic feet). The first is an estimate of the size of the passenger compartment; the second, the size of the trunk or, in station wagons and hatchbacks, the cargo space behind the second seat.

Factors That Affect Fuel Economy

The fuel economy numbers in this Guide are based on carefully controlied tests performed on well-maintained vehicles. No standardized test of this type can ever represent each person's individual driving.
Surveys have shown that over half of all drivers report that their average fuel economy is within 2 mpg of the EPA estimate. However, approximately 10 percent report mileage that is more than 5 mpg below the EPA combined estimate for their model car. In buying a new car, you should recognize that the EPA estimates cannot predict the mileage you will obtain. Instead, the EPA estimates provide a way to compare the relative fuel economy performance of different models when they are driven under the same conditions.
There are many factors that can affect your car's fuel economy and cause the fuel economy to differ from that listed in this Guide. One is that even two cars of the same model, identically equipped, may vary in fuel economy by as much as plus or minus 10 percent (2 mpg on a 20 combined mpg car) due to production variability. Also, any differences between the test conditions and the condition of your vehicle, your driving habits, and the weather, road, and traffic conditions under which you drive will result in a different fuel economy from that listed for your car. The following paragraphs explain how some of these factors affect fuel economy.

Temperature

Summer temperatures (over 70° F.) are better for fuel economy than winter temperatures. At $20^{\circ} \mathrm{F}$., for example, there can be an approximate 8 percent fuel economy loss compared to the combined mpg number in this Guide. For a 20 mpg (combined) vehicle, this is about 1.5 mpg .

Wind

Wind can increase or decrease fuel economy. Examples for a car that normally gets 20 mpg (combined) are:
18 mph tailwind \rightarrow about 12 -percent gain in fuel economy (2.4 mpg).
18 mph crosswind-about 1-percent loss in fuel economy (0.2 mpg).
18 mph headwind \rightarrow about 10 -percent loss in fuel economy (2 mpg).

Precipitation

Rain or snow, and the wet roads that result, can cause an approximate 10 -percent loss in tuel economy (2 mpg for a $\mathbf{2 0 - \mathrm { mpg }}$ vehicle).

Road Condition

Rough or toose road surfaces (such as sand or gravel) can also cause a fuel economy loss ranging between 10 and 30 percent (or 2 to 6 mpg for a $20-\mathrm{mpg}$ vehicle). Cars use more fuel on hilly roads than flat roads. The fuel saved in going downhill does not equal the extra fuel used going uphill. Mountain driving causes an even greater fuel economy penalty.

How You Drive

An engine that is already warmed up (such as one that was used in the last 4 hours) requires less fuel to reach its most efficient operating condition than a "cold" engine (such as one in a car parked overnight).
Trip length also affects fuel economy. Shorter trips (under 5 miles) do not allow the engine to reach
its best operating condition, whereas longer trips allow the peak operating temperature and engine condition to be obtained. This does not mean that you can save fuel by increasing the length of your short trips. It does mean that by combining numerous short trips into a single, longer trip you can save fuel by reducing the total miles driven as well as taking advantage of your vehicle's warmed-up condition.
Smooth, even driving improves fuel economy performance; therefore, try to avoid sudden stops and starts. By anticipating stop lights and intersections, you can slow down gradually. Also, avoid rapid accelerations. On the highway, you will improve your fuel economy by driving at or below the $55-\mathrm{mph}$ speed limit.

Your Vehicle's Condition

The condition of your vehicle is important, too, for fuel economy reasons:

- Maintain your vehicle according to the manifacturer's specifications. On the average, a tuned-up vehicle gets approximately 3 to 9 percent better fuel economy than one that has not been properly maintained.
- Keep the tires inflated to the proper pressure. Underinflated tires can cause a fuel economy loss.
For a more detailed technical discussion of the factors that affect fuel economy, write for
"Factors Affecting Fuel Economy"
Public Information Center (PM-215)
U.S. Environmental Protection Agency

Washington, D.C. 20460

Fuel Economy Tests

The city and highway fuel economy values in this Guide come from tests conducted or approved by the U.S. Environmental Protection Agency (EPA). These tests are performed on vehicles submitted by the auto industry to EPA to demonstrate compliance with the requirements of the Clean Air Act and the Energy Policy and Conservation Act. Each vehicle is tested under precisely controlied
conditions by professional drivers in a laboratory on a dynamometer. The dynamometer is a machine that permits exact simulation of the vehicle's operation under various driving conditions. Temperature is controlled in the laboratory in a range of 68° to $86^{\circ} \mathrm{F}$. in order to provide the same temperature conditions for all vehicles.

City Test

This test simulates a 7.5 -mile, stop-and-go trip with a speed range of 0 to 56 mph , and an average speed of 20 mph . The trip takes 23 minutes and has 18 stops. Eighteen percent of the trip is spent idling, such as would be expected in the city at traffic lights or in rush-hour traffic. Two kinds of engine starts are used. One is a cold start, which is similar to starting a car in the morning after it has been parked all night. The other is a hot start, which is similar to starting a vehicle after having parked it for a short time while shopping. The information from this test is then combined to represent the fuel economy of that vehicle during a realistic mixture of hot and cold starts during urban driving conditions.

Highway Test

This test simulates a 10 -mile, non-stop trip that begins with the vehicle warmed up. The trip has an average speed of about 50 mph and lasts 13 minutes. The speed during the test ranges from 0 to 60 mph . If your highway driving speed averages faster than the test's average of 50 mph , you should expect to achieve poorer fuel economy than the highway fuel economy estimate in this Guide-about 10 to 15 percent less for every 10 mph above 50 mph .

Fuel Economy Labels

All 1978 passenger automobiles and light trucks are required to have gas mileage labels if they have gross vehicle weights of 6000 pounds or less. There are two types of labels. The one that will appear on most vehicles is the General Label. The fuel economy numbers on these labels are the
same as those that appear in this "Gas Mileage Guide" and are based on an average of fuel economy test results for similar versions of a given model.
The Specific Label (which will be clearly marked "Specific Label") will have additional information about that vehicle's characteristics and will have fuel economy estimates that relate to a specific Individual vehicle within the model line.
Because of this, the Specific Label in some cases will have fuel economy estimates that are different from the General Label values in the "Gas Mileage Guide."
Also, the estimates on a Specific Label may not fall into the range of fuel economy estimates listed for its class. This is because a specific model may be more fuel efficient than the average for the model type.

Fuel Costs, in Dollars, Per 15,000 Miles

Example: If you pay an average of 65 cents per gallon and your car gets 12 mpg , your fuel cost for 15,000 miles of driving is $\$ 813$. If you own a car that gets 20 mpg , your annual fuel cost for 15,000 miles at 70 cents per gallion is $\$ 525$.

MINICOMPACT CARS

Manufacturers	Fuel Economy				Vahicle Description				
			-	遍				E	
AVANTI AVANTIII dateun B-210	16	5656	14	19	350/8		A	4	2DR-75/8
	33	5318	28	40	85(1397CC)/4 \dagger	(nOCAT]	M	2	208-68/7
	40	5262	36	48	85(1397CC)/4	(cati)	M	2	4DR-68/7
	20	\$404	24	28	85(1397CC)/4 \dagger	(nocati	A	2	$\left.\right\|_{14} ^{1-1 T B K-63 /}$
200 Sx	27		24	32	119/4 \dagger		M	2	2DR-70/6
	25	$\sin 20$	23	28	119/4t		A	2	20-70/6
DODCE CELESTE									
	33	\$318	29	39	98/4	i	m	2	$\left.\right\|_{11} ^{\text {HTBK-73/ }}$
	32	5328	29	38	80/4	I	A	2	
	31	\$339	27	36	122/4		M	2	
	27	\$388	24	31	122/4		${ }^{\text {A }}$	2	
Challenger	330	5318 5350	29	4	90/4	,	M	2	20R.77/8
	28	\$375	24	35	156/4		A		
	24	5438	22	28	156/4		${ }^{+}$		
COLT	30	5276	34	45	98/4		M 2		2DR-73/8
	132	5328	29	38	198/4		${ }^{4}{ }^{2}$		4DA-73/8
$\begin{aligned} & \text { f1AT } \\ & \text { 128 } \end{aligned}$									
	23	5457	20	31	79/4 \dagger		M	2	$\left\lvert\, \begin{aligned} & 2 D R-75 / 9 \\ & 4 D R-76 / 9 \end{aligned}\right.$
									HTBK-721
FORD MUSTANG II									
	25	5404	23	33	140(2.3L)/4		M 2	2	2DR-72/8
	25	5420	22	31	140(2.3L)/4		A 2	2	${ }_{10} \mathrm{HTBK}-70 /$
	22	\$478	20	26	171(2.8L)/6				
	18	\$584	16	20	171(2.8L)/6				
	19	\$552	16	23	302(5.0L)/8		M. 2		
	19	\$552	16	23	302(5.0L)/8				
PINTO	29	\$362	25	35	140(2.3L)/4		M 2		2DR-75/8
	24	\$438	21	29	140(2.3L)/4				HTBK-74/9
	20	\$525	18	22	171(2.8L)/6				
MONDA Clvic									
	32	5328	29	37	78(1238CC)/4 \dagger		M		20R-85/5
	25	S420	23	30	76(1238CC)/4 \dagger				HTBK-65/9
	40	\$262	36	4	91/4 \dagger	(cvec)			
	22	5328	29	35	91/4t	(cucc),			
LINCOLNmencunv вовсат									
	120	15362		35	140(2.3L)/4				HTBK-74/9

MINICOMPACT CARS

[^0]
SUBCOMPACT CARS

Manufacturers	Fuel Economy				Vehicle Description			
			$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{7}{0} \end{aligned}$					
alfa romeo alfetta	23	S457	19	29	120(1972CC)/4			$\begin{aligned} & 2 \mathrm{DR}-74 / 7 \\ & 4 \mathrm{DR}-89 / 9 \end{aligned}$
AMC GREMLIN	26	5404	22	34	121/4			HTEK-79/9
	24	5438	20	29	121/4			
	23	5457	20	28	232/6			
	21	\$500	18	25	232/6			
	19	\$552	16	25	258/6			
	18	\$584	16	21	258/6		A	
$\begin{aligned} & \text { AUDI } \\ & \text { FOX } \end{aligned}$								
	28	\$375	23	37	97/4+			2DF-84/11
	123	5457	20	29	97/4 \dagger		A Fl^{\prime}	4DR-84/11
$\begin{aligned} & \text { BMW } \\ & 3201 \end{aligned}$	22	\$478	19	28	121/4 \dagger		M Fi	2DR-82:12
	21	\$500	18	26	121/4 +		FI	
5301	17	5617	14	24	182/6t		$M \mathrm{Fl}$	4DR-86/13
	17	S617	14	21	182/6 \dagger		A Fi	
Burck								
OPEL	27	\$388	24	34	111/4		M 12	20R-76/10
	27	\$388	24	31	111/4		A 12	4DR-79/10
SKYhawk	19	5552	16	28	231/6			HTBK-78:
	22	5478	19	27	231/6		A 2	
ChEVHOLET camaro								
	21	\$5500	$\left\lvert\, \begin{aligned} & 18 \\ & 17\end{aligned}\right.$	27	$250 / 6$ $250 / 6$			20R-85/6
	17	5617	\|15	21	305/8			
	19	S552	${ }^{16}$	22	305/8		A	
	16	\$656	14	19	350/8	(GM-CHEV)N	M	
	17	\$617	15	21	350/8	(GM-CHEV) ${ }^{\text {a }}$	$4{ }^{4}$	
chevette	34	\$309	130	40	98(1.6L)/4		M ${ }^{1} 1$	\|HTBK-79/9
	28	\$375	25	33	98(1.6L)/4			
MONZA	28	\$375	24	34	151/4			200-78/7
	26	\$404	23	31	151/4			$\left.\right\|_{10} ^{\text {HTBK-78/ }}$
	23	\$457	19	33	196(3.2L)/6			
	21	\$500	18	26	196(3.2L)/6			
	19	\$552	15	28	231/6			
	21	5500	18	26	231/6			
	18	\$584	16	22	305/8		M	
	20	\$525	17	25	305/8			
$\begin{aligned} & \text { Datsun } \\ & \text { F-10 } \end{aligned}$	33	\$318	28	40	85(1397CC)/4		M 2	HTBK-71/

Certified tor use on leaded gasoline.

SUBCOMPACT CARS

Certified for use on leaded gasoline.

SUBCOMPACT CARS

COMPACT CARS

Manufacturers	Fuel Economy				Vehicte Description			
	8 $\frac{2}{2}$ $\frac{2}{6}$ $\frac{1}{6}$		$\begin{aligned} & \text { Do } \\ & \frac{2}{2} \\ & \frac{2}{0} \\ & \hline \end{aligned}$				E	
FOAD GRANADA	$\begin{aligned} & 24 \\ & 21 \\ & 19 \\ & 19 \end{aligned}$	$\$ 438$ 2 $\$ 500$ 1 $s 552$ 1 $\$ 552$ 1	$\begin{aligned} & 21 \\ & 18 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 28 \\ & 26 \\ & 25 \\ & 23 \end{aligned}$	$\begin{aligned} & 250(4.1 L) / 6 \\ & 250(4.1 L) / 6 \\ & 302(5.0 L) / 8 \\ & 302(5.0 L) / 8 \end{aligned}$	$\left.\begin{gathered} M \\ A \\ M \\ A \end{gathered} \right\rvert\,$		$\left\lvert\, \begin{array}{l\|l\|l\|} \hline 208-69 / 15 \\ 4 D R-23 / 15 \end{array}\right.$
UNCOLNMERCURY MONARCH	$\begin{aligned} & 24 \\ & 21 \\ & 10 \\ & 19 \\ & 18 \\ & 18 \end{aligned}$		$\begin{aligned} & 21 \\ & 18 \\ & 16 \\ & 16 \end{aligned}$	$\begin{aligned} & 28 \\ & 26 \\ & 25 \\ & 23 \\ & 2 \end{aligned}$	$250(4.1 \mathrm{~L}) / 6$ $250(4.1 \mathrm{~L} / 6$ $302(5.0 \mathrm{~L} / \mathrm{C}$ $302(5.0 \mathrm{~L}) / 8$ $302(5.0 \mathrm{~L} / 8$		$\begin{gathered} \mathbf{M} \\ \mathbf{M} \\ \mathbf{M} \\ \mathbf{A} \\ \mathbf{A} \\ \hline \end{gathered}$	2DR-69/16 $4 D R-93 / 16$ $4 D R-92 / 15$
VERSAILLES mencedesBENR MB 116(280)	18	556 16 5656 1	16	${ }_{19}^{23}$	$302(5.0 \mathrm{~L} / \mathrm{l} / 8$ $168(2.8 L) / 6$		${ }^{\text {A }}{ }^{\text {a }}$	4DR-92/15
	26	\$346	24	29	183(3.0L)/5	$\begin{aligned} & \text { TURBO- } \\ & \text { DIESEL) } \end{aligned}$	Fl	
M 123(230)	19	5552	17	22	141(2.3L)/4		1	2DR-88/13
	29	\$5310	26	34	$147(2.4 L) / 4$ $147(2.4 L) / 4$	(DIESEL)		4DR-92/13
	16	\$656	14	19	16e(2.8L)/6		A FI	
	25	\$360	22	28	183(3.0L)/5	(DIESEL)A	A Fl^{1}	
OLDSMOBILE OMEGA		\$552	16	28	231/6			2DR. 90 /14
	21	\$500	18	26	231/6		$A \cdot 2$	4DR. $96 / 14$
	17	\$617	15	21	305/8			$\begin{aligned} & \text { HTBK-90: } \\ & 16 \end{aligned}$
	19	5552	16	22	305/8		A 2	
peuceot 504					120/4			4DA-90'10
	$\left\lvert\, \begin{aligned} & 20 \\ & 19 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 5525 \\ & \$ 552 \end{aligned}\right.$	17	22	120/4		${ }^{4} 2$	
	30	5300	28	34	141/4	(DIESEL)	M ${ }^{\text {F1 }}$	
	28	5321	25	[31	141/4/4	(DIESEL)		4DR-91/14
604	18	$\begin{array}{l\|l\|} 8 & 5504 \\ 7 & 5617 \end{array}$	15	$\begin{array}{l\|l} 22 \\ 5 & 19 \end{array}$				40R-9174
PLYMOUTH MORIZON								
	29	9 5362	25	38	105/4			$\left.\right\|_{15} ^{H T B K-85}$
	26	6.5404	23	31	105/4			
volare	23	13 5157 3 5457 1 15	120	28 27	$\begin{array}{l\|l} 8 & 225 / 6 \\ 7 & 225 / 6 \end{array}$		M $\begin{gathered}\text { a } \\ \mathrm{M}\end{gathered}$	2DR-87•5 4DR-96 15
	23	3457 1 5500	$1 \begin{aligned} & 20 \\ & 18\end{aligned}$		(125/6		(A\| 2	
	21	1 \$500	18	25	5 225/6			
	18	8 \% 5584	15	15	$5{ }^{2} 518 / 8$			
		8 \%584			2 \|318/8			

COMPACT CARS

	Fuel Economy				Vehicle Description				
	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & 8 \\ & \frac{8}{6} \\ & \frac{E}{2} \\ & \hline 0 \\ & \hline 0 \end{aligned}$		0 $\frac{0}{2}$ $\frac{2}{2}$ 0						
PLYMOUTH vOLARE	$\left\lvert\, \begin{gathered} 17 \\ 13 \end{gathered}\right.$	$\left\|\begin{array}{l} 5617 \\ 5807 \end{array}\right\|$	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	$\left.\right\|_{22} ^{22}$	$\left\lvert\, \begin{array}{\|c} 360 / 8 \\ 360 / 8 \end{array}\right.$		A A		
PONTIAC PHOENIX	23	5457	21	27	151/4		${ }^{1} 12$	2DR-90/14	
	19	\$552	16	28	231/6		M 12	4DR-96/13	
	20	\$525	18	26	231/6		A 2	HTBK-90/	
	17	S617	15	21	305/8		$\mathrm{M} \mid 2$		
	19	5552	16	22	305/8		A 2		
ROLLSROYCE BENTLEY CAMARGUE	11	S954	10	13	412/8		A 2	2DR-9A/14	
$\begin{aligned} & \text { Sane } \\ & 99 \end{aligned}$									
	25	5420	22	30	122(2.0L)/4	(3WAYCAT) M	M ${ }^{\text {Fi }}$	2DR-91/13	
	22	5478	20	27	122(2.0L)/4	(3WAYCATTUABO)		$\left\lvert\, \begin{aligned} & \text { HTBK- } \\ & 21 \end{aligned}\right.$	
	23	S457	19	29	122(2.0L)/4 \dagger	(NOCATX	$X_{1} \mid F_{1}$		
	23	5457	20	26	122(2.0L)/4	(3WAYCAT)/A	/A ${ }^{\text {Fi }}$		
	21	\$500	18	24	122(2.0L)/4 \dagger	(nocat)a	A FI		
$\begin{aligned} & \text { VOLVO } \\ & \text { VOLVO SEDAN } \end{aligned}$			20	31	130/4	(3WAYCATXM	, M FI	2DR-89/14	
	23	\$457	19	29	130/4	(CAT)M		4DR-89/14	
	21	\$500	19	24	130/4	CATIA	A ${ }^{\text {a }}$ F1		
	22	S478	20	25	130/4	(3WAYCAT)	/A F/FI		
	19	ís552	15	127	163/6	(CAT):	TMFI		
	19	\|S552	16	27	163/6	(3WAYCAT)			
	18	\$584	16	22	163/6				
	19	\$552	17	23	163/6	(3WAYCAT)	r\|A	FI	

MID-SIZE CARS

MID-SIZE CARS

Manufacturers		Fuel Economy				Vohicle Oescription					
				-	-					E	
0000E Charger se/ MAGNUM XE											
	16	\% 5656			21	318/8					
	17	5617	1		22	300/8					20A-97/16
	15	\$700	13		20	400/8				4	
DiPlomat	20	\$525	17		25	225/6				2	2DR-91/16
	19	5552	17		22	225/6					40R-97/16
	18	\$584	15		25	318/8				12	
	18	S584	15		22	318/8				2	
	17	5617	14		22	380/8				,	
MONACO	20	S525	18		25	225/6				1	20R-95/15
	20	5525	17		24	235/6					$\left.\right\|_{20} ^{40 R-101 /}$
	10	5552	17		22	225/6					
	16	5656	14		21	318/8				2	
	17	5617	14		22	380/8				2	
	13	5817	10		17	360/8				1	
	15	$\$ 700$	13		20	400/8				4	
	11	5954	10		14	440/8			A	4	
FORD FAIRMONT											
	$\left[\begin{array}{l} 26 \\ 26 \end{array}\right.$	$\left\|\begin{array}{l} 5404 \\ 5404 \end{array}\right\|$	23			140(2.3L)/4			M	2	2DR-95/17
	24	S438	21		29	200(3.3L)/6			A		R-96/17
	22	\$478	18		26	200(3.3L)/6				1	
		$\left.\right\|_{\text {s5s }} ^{552}$	16		23	302(5.0L)/8			A	2	
LTD 11	17	$\left\|\begin{array}{l} 5617 \\ 5656 \end{array}\right\|$	15		22	302/8 $351(5.8 L) / 8$				2	2DA-94/16
		5656	14		20	351(5.8L)/8		(MENG)	A	2	$\int_{16}^{4 D R-102 /}$
	18	\$5804	15		22	351 (5.8L)/8		(WENG)	A	2	
	15	\|\$700	13		17	400(6.8L)/8			A	2	
THUNDERBIRD	16	[5617	14	22	$22 \mid 3$	$\left\lvert\, \begin{aligned} & 302(5.0 L) / 8 \\ & 351(5.8 L) / 8 \end{aligned}\right.$			A	2	2DR-95
	18	3584	15	22	22	351(5.8L)/8		(WENG)			
	15	\$700	13	17	7	400(6.6L)/8				2	
UNCOLMMERCUAY CONTINENTAL MARK V											
	15	\$700	13	20		40016.8L)/8			A	2	2DA-99/18
COUGAR/ COUGAR XR-7			12	17		460(7.5L)/8			A	4	
	17	5617	15	22	23	302(5.0L)/8			A	2	20R-83/16
	16	3656	14	20		351(5.8L)/8		(MENG)		2	4DA-101/
	18	\$584.	15	22	235	351(5.8L)/8		(WENG,		2	
	15	\$700	13	17		400(6.8L)/8					
ZEPHYR	26	5404	23	33		140(2.3L)/4			M		2DR-05/17
	26	S404 12	22	133		140(2.3L)/4					4DR-06/17

MID-SIZE CARS

LARGE CARS

Manufacturers	Fuel Economy				Vehicle Description				
	$\begin{array}{\|c\|} \hline \frac{8}{2} \\ \frac{8}{8} \\ \frac{5}{5} \\ 5 \\ \hline \end{array}$		$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{2}{5} \\ & \hline \end{aligned}$				(1)		
amc matador SEDAN	14	\$750	12	17	360/8	A	12		$\begin{aligned} & 40 R-110 \prime \\ & 20 \end{aligned}$
bulck ELECTRA	18	3584	15	22	350/8	(GM-BuICK) A	A 4		$208-108 /$
	16	5656	14	20	403/8		A 4		$\begin{aligned} & 20 \mathrm{DR}-111 / 1 \end{aligned}$
LESABRE	20	\$525	17	25	231/6		A ${ }^{2}$		${ }_{21}^{208}$-107/
	19	5552	16	22	231(3.8L)/6	(turbota	A 4		$\left.\right\|_{21} ^{4 D R-111 /}$
	20	5525	17	24	301/8		A		
	18	S584	15	22	350/8	(GM-BUICK) A	4		
	17	\$617	14	20	403/8				
RIVIERA	18	\$584	15	22	350/8	(GM-BUICK) A			$\left.\right\|_{20} ^{2 D R-106 /}$
	16	5656	14	20	403/8		A 4		
cadillac cadillac									
	15	5700	13	19	425/8				$22^{2 D R-107 /}$
	14	\$750	12	18	425/8		A	FI	20
LIMOUSINE CMEVBOLET CHEVROLET	11	5954	10	15	425/8		A	4	$\left.\right\|_{18} ^{4 D R-116 /}$
	19	\$552	17	24	250/6		A	1	${ }_{20}^{208-106 /}$
	19	\$552	16	22	305/8		A	2	$\left.\right\|_{20} ^{40 R-111 /}$
	17	\$617	15	21	350/8	(GM-CHEV) ${ }^{\text {a }}$	A	4	
Chryslea CHRYSLER									
	15	\$700	13	20	360/8		\wedge	2	$\begin{aligned} & 20 R-106 / \\ & 22 \end{aligned}$
	14	\$750	11	18	400/8		A	4	\int_{22}
	12	\$875	10	16	440/8		A	4	
FORD FORD			15						
	17	5617	15	22	302(5.0L)/8		A	2	${ }_{23}^{208-100 /}$
	16	5656	13	21	1 351(5.8L)/8	(MENG)	A	2	2DR-106/
	18	S584	15	22	$2351(5.8$ L)/8	(WENG)	${ }^{\text {A }}$	2	
	15	/5700	13	20	(400(6.6L)/8		A	2	
	114	/\$750	12	17	7 460(7.5L)/8				

TWO SEATERS

SMALL STATION WAGONS

Manufacturers	Fuel Economy				Vehicle Description				
			을	$\left\|\begin{array}{l} 0 \\ \frac{0}{2} \\ 2 \\ 5 \\ \frac{5}{5} \\ \frac{0}{5} \end{array}\right\|$			cit		
amc CONCORD WAGON									
	22	S478 ${ }^{19}$	19	26	232/6				4DR-91/30
	20	\$525 1	18	23	232/6				
	18	\$584	16	21	258/6				
	16	5656	14	19	304/8				
PACER WAGON	22	5478	19	26	232/6		M		2DR-91/26
	20	\$525 1	18	23	232/6				
	19	5552	16	25	258/6		M		
	18	5584	16	21	258/6				
	16	\$656 1	14	19	304/8				
AUD FOX WAGON									
	28	s375	23	37	97/4 \dagger		M	1	4DR-83/40
	23	\$457 20	20	29	97/4		A		
ChEVROLET MONZA WAGON									
	28	\$375	24	34	151/4				2DR-83/25
	26	S404	23	31	151/4				
	19	5552	15	28	231/6				
	21	5500	18	26	231/6				
datsun F-10 WAGON 510 WAGON									
	33	\$3318	28	40	85(1397CC)/4 \dagger	(NOCAT)	M		$\begin{aligned} & \text { 2DR-73/29 } \\ & \text { ADR-79/29 } \end{aligned}$
	27	\$388	24	32 28	119/4 \dagger		M		4DR-79/29
810 WAGON	25	\$8420	23	23	$119 / 4 \dagger$ $146 / 6 \dagger$			Fi	4DR. $81 / 30$
	19	5552	17	21	146/6 \dagger		A	Ft	
DODGE COLT WAGON									4DR-82/34
	$\left\lvert\, \begin{aligned} & 32 \\ & 30 \end{aligned}\right.$	$\left\|\begin{array}{l} \mathbf{s 3 2 8} \\ \mathbf{3} 50 \end{array}\right\|$	27	338	98/4				4OR-82/3
	28	5375	24	35	156/4			2	
	24	5438	22	28	156/4			-	
mat 128 WAGON 131 ESTATE WAGON									
	23	S457	20	31	79/4 \dagger			2	20R-76/26
	21	\$500	17	27	107/4 \dagger		M		4DR-85/33
	20	5525	18	23	107/4		A	2	
FORD PINTO WAGON									
		5404	23	33	$140(2.3 \mathrm{~L}) / 4$		M	2	2DR. 7831
	25	\$420	22	31	$140(2.3 L) / 4$		A	2	
	20	3525	18	22	171(2.8L)/6			2	
HONDA CIVIC WAGON								3	4DR. 6522
	$\left[\begin{array}{l} 33 \\ 29 \end{array}\right.$		$2 \begin{aligned} & 31 \\ & 27\end{aligned}$	36 31		(cvec)			

SMALL STATION WAGONS

1-Certred tor use on laended gessoline.

- Arnuate in Puerto Rico only.

MID-SIZE STATION WAGONS

Manufacturers	Fuel Economy				Vehicte	Des	iption		
			\%				E	E	
Bunck									
CENTUAY WAGON	22	\$478	19	27	231/6		A	2	$40 \mathrm{40R-100} /$
	19	3552	16	22	305/8		A	2	
	18	\$584	16	23	305/8		A	4	
CHEVROLET									
MALIBU WAGON	24	3438	21	29	200(3.3L)/6		M	2	$40 \mathrm{ADR-101/}$
	21	5500	19	25	200(3.3L)/6		\cdots	2	
	17	5617	15	21	305/8		M	2	
	19	\$552	16	22	305/8		A	2	
CMAYSLER									
LEBARON WAGON	20	\$525	17	25	225/6			2	4DR-98/39
	19	5552	17	22	22516		M	2	4DR-89/3s
	16	\$556	14	21	318/8		A	2	
	17	\$617	14	22	360/8		A	2	
DOOGE									
ASPEN WAGON	20	5525	18	25	225/6		M	1	4DR-99/39
	20	\$5525	17	25	225/6		M	2	
	19	5552	17	22	225/6		A	2	
	18	3584	15	25	318/8		M	2	
	18	\$584	15	22	318/8		A	2	
	17	5617	14	22	1360/8		A	2	
DIPLOMAT WAGON	20	5525	17	25	225/6		M	2	4DR-98/39
	19	5552	17	22	225/6		A	2	
	16	\$656	14	21	318/8		A	2	
	17	5617	14	22	360/8		A	2	
MONACO WAGON	15		13	20			A	2	
	15	5700	13	20	360/8		A	2	$j 50$
	14	\$750	11	18	400/8		A	4	
PORD									
FAIRMONT WAGON	26	\$404	23	33	140(2.3L)/4		M	2	40R-98/43
	23	5457	19	29	200(3.3L)/6		M	1	
	20	3525	18	24	200(3.3L)/6		A	1	
	19	3552	16	23	302(5.0L)/8			2	
LINCOLNmeacuny									
ZEPHYR WAGON	26	\|\$404	23	33	140(2.3L)/4			2	4DR-98/43
	23	S457	$\mid 19$	129	(200(3.3L)/6				

MID-SIZE STATION WAGONS

LARGE STATION WAGONS

SMALL PICKUP TRUCKS

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Manufacturens \& \multicolumn{4}{|r|}{Fuel Economy} \& \multicolumn{3}{|l|}{Vehicle Description} \\
\hline \& \& \& - \& 㜢 \& \& \& E \\
\hline chevaolet LUV PICKUP \& \[
\left\lvert\, \begin{aligned}
\& 27 \\
\& 26
\end{aligned}\right.
\] \& \[
\left\lvert\, \begin{aligned}
\& 5388 \\
\& 5404
\end{aligned}\right.
\] \& \[
\begin{aligned}
\& 24 \\
\& 23
\end{aligned}
\] \& \[
\begin{array}{|l|}
34 \\
29
\end{array}
\] \& \[
\begin{aligned}
\& 111 / 4 \\
\& 111 / 4
\end{aligned}
\] \& M \& \\
\hline DATSUN PICKUP \& \[
\begin{aligned}
\& 27 \\
\& 24
\end{aligned}
\] \& \[
\begin{array}{|c}
5388 \\
5438
\end{array}
\] \& 24 \& \[
\left\lvert\, \begin{aligned}
\& 31 \\
\& 26
\end{aligned}\right.
\] \& \[
\begin{aligned}
\& 119 / 4 \dagger \\
\& 119 / 4 \dagger
\end{aligned}
\] \& M M \& 2 \\
\hline FORD COURIER PICKUP \& \[
\left\lvert\, \begin{aligned}
\& 33 \\
\& 29 \\
\& 25
\end{aligned}\right.
\] \& \[
\begin{array}{|c}
\$ 318 \\
5362 \\
5420 \\
5420
\end{array}
\] \& 29 \& \[
\begin{array}{|l}
38 \\
35 \\
29
\end{array}
\] \& \[
\begin{aligned}
\& 110(1.8 L) / 4 \\
\& 140(2.3 L) / 4 \\
\& 140(2.3 L) / 4
\end{aligned}
\] \& (\(\begin{gathered}\text { M } \\ M \\ \text { A }\end{gathered}\) \& 2
2
2 \\
\hline \begin{tabular}{l}
MAZDA \\
B1800 PICKUP \\
toyota \\
HILUX
\end{tabular} \& 33 \& \$318

5404
$\$ 438$ \& 29 \& 38
31

27 \& $$
\left\{\begin{array}{l}
110 / 4 \\
134 / 4 \\
134 / 4
\end{array}\right.
$$ \& $\cdots \mathrm{M}$ \& 2_{2}^{2}

\hline
\end{tabular}

Consified for use on maded pasoline.

STANDARD PICKUP TRUCKS

Manufacturers	Fuol Economy				Vehicle Description			
	$\begin{array}{\|c\|} \hline 0 \\ \frac{0}{2} \\ \frac{8}{2} \\ \frac{k}{6} \\ \frac{5}{6} \\ \hline \end{array}$		道	$\begin{aligned} & 0 \\ & \frac{0}{2} \\ & \frac{2}{2} \\ & \frac{1}{6} \\ & \frac{0}{2} \end{aligned}$				
ChEVROLET EL CAMINO	24	5438	21	29	200(3.3L)/6		M	
	21	\$500	19	25	200(3.3L)/6		A	
	18	\$584	16	22	305/8		M	2
	19	S552	16	23	305/8		A	2
	16	5656	14	19	350/8	(GM-CHEV)	M	4
	17	5617	15	21	350/8	(GM-CHEV)		4
PrCKUP.	19	\$552	17	24	250/6			
	18	s584	16	22	$250 / 6$		A	1
	17	5617	15	21	305/8		M	2
	16	\$656	15	19	305/8		A	2
	15	\$700	14	18	350/8	(GM-CHEV)	M	4
	15	\$700	13	17	350/8	(GM-CHEV)	A	-
	$\begin{aligned} & 23 \\ & 13 \end{aligned}$	$\left\lvert\, \begin{aligned} & 5392 \\ & \mathbf{S 8 0 7} \end{aligned}\right.$	12	$\left\lvert\, \begin{aligned} & 27 \\ & 16 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 350(5.7 L) / 8 \\ & 454 / 8 \end{aligned}\right.$	(Diesel)	$\left\|\begin{array}{c} A \\ A \end{array}\right\| \text {. }$	FI

STANDARD PICKUP TRUCKS

VANS

+Certried for use on lesoded gasoline

SYOny ヨsOdynd 7VIכヨdS

For additional single copies of the "1978 Gas Mileage Guide," write:

```
Fuel Economy Pueblo, Colorado 81009
```

For bulk copies, write:
U.S. Department of Energy Fuel Economy Distribution Office of Administrative Services Washington, D.C. 20585

[^0]: Cortitied for use on mectec gean

