Clean Cities Alternative Fuel Price Report

March 2007

WELCOME!

Welcome to the March 2007 issue of the Clean Cities Alternative Fuel Price Report, a quarterly report designed to keep you up to date on the prices of alternative fuels and conventional fuels in the U.S. This issue summarizes prices that were collected between February 21, 2007 and March 2, 2007 from Clean Cities Coordinators, fuel providers, and other Clean Cities stakeholders.

METHODOLOGY

In order to collect price information for both alternative fuels and conventional fuels from areas across the country, Clean Cities Coordinators, fuel providers, and other key stakeholders were contacted to request that they provide prices for fuels in their area on a voluntary basis. Prices were collected on all major alternative fuels currently in widespread use (natural gas, propane, biodiesel, and ethanol), as well as prices for conventional fuels at stations that also sell alternative fuels (or stations nearby). Prices were collected from public and private refueling stations throughout the country, and were collected between February 21, 2007 and March 2, 2007. Prices were then averaged in order to determine regional price trends by fuel and variability in fuel price within regions (and among regions). Prices in this report are
 grouped by U.S. areas as defined by the Petroleum Administration for Defense Districts (PADD): the districts are illustrated in the map to the right.

The prices collected for this report represent retail, at-the-pump sales prices for each fuel, including Federal and state motor fuel taxes. In some cases, prices were collected from government or utility refueling facilities and these taxes were not included in the reported price. In these instances, although these users are not required to pay these taxes, the taxes were added to the reported price to provide a more representative basis for comparison of fuel prices for the purpose of this report. In some cases, states may charge a flat annual fee for motor fuel taxes (especially for gaseous fuels like $\mathrm{CNG})$: these fees are not considered in the prices reported in these pages.

SUMMARY OF CURRENT REPORT INFORMATION

Overall nationwide average prices for conventional and alternative fuels are shown in Table 1. As this table illustrates, alternative fuel prices relative to conventional fuels vary, with some (propane and 100% biodiesel) higher and some (E85 and CNG) lower. CNG is about 36 cents less than gasoline on an energy-equivalent basis, while E85 is about 20 cents less per gallon than gasoline. Biodiesel prices for low-level blends are lower than regular diesel by about 10 cents, and B20 blends are about 3 cents less per gallon than regular diesel. B99/B100 blends (essentially pure biodiesel) have a cost of about 68 cents per gallon more than regular diesel.

Table 1. Overall Average Fuel Prices

	Nationwide Average Price for Fuel This Report	Nationwide Average Price for Fuel Last Report	Change in Price This Report vs. Last Report	Units of Measurement
Gasoline (Regular)	$\$ 2.30$	$\$ 2.22$	$\$ 0.08$	per gallon
Diesel	$\$ 2.63$	$\$ 2.62$	$\$ 0.01$	per gallon
CNG	$\$ 1.94$	$\$ 1.77$	$\$ 0.17$	per GGE
Ethanol (E85)	$\$ 2.10$	$\$ 2.11$	$(\$ 0.01)$	per gallon
Propane	$\$ 2.62$	$\$ 2.33$	$\$ 0.29$	per gallon
Biodiesel (B20)	$\$ 2.53$	$\$ 2.66$	$(\$ 0.13)$	per gallon
Biodiesel (B2-B5)	$\$ 2.60$	$\$ 2.75$	$(\$ 0.15)$	per gallon
Biodiesel (B99-B100)	$\$ 3.31$	$\$ 3.31$	$\$ 0.00$	per gallon

Relative to the last report from October 2006, the average prices for some of the fuels included in this price report have increased by as much as 29 cents. Some (ethanol and biodiesel) have dropped in price by as much as 15 cents. It should be noted that the price increases or decreases could be attributed both to an actual increase in price and to a slightly differing sample of prices (both location and quantity).

Prices in this report were collected and are reported in the units in which they are typically sold (dollars per gallon or dollars per gasoline-gallon equivalent). Because of differing energy contents per gallon for these fuels, the price paid per unit of energy content can differ somewhat from the price paid per gallon. Table 2 illustrates the fuel prices from Table 1 for the current reporting period normalized to a price per gasolinegallon equivalent, diesel gallon equivalent, or per million Btu of energy. This calculation involves the use of lower heating values in Btu per gallon of fuel which can be found in the Transportation Energy Data Book ${ }^{1}$. Note that prices for the alternative fuels in terms of cost per gallon equivalent are higher than their cost per gallon because of their lower energy content per gallon ${ }^{2}$.

Table 2. March 2007 Overall Average Fuel Prices on EnergyEquivalent Basis

	Nationwide Average Price for Fuel in Gasoline Gallon Equivalents	Nationwide Average Price for Fuel in Diesel Gallon Equivalents	Nationwide Average Price for Fuel in Dollars per Million Btu
Gasoline	$\$ 2.30$	--	$\$ 19.96$
Diesel	--	$\$ 2.63$	$\$ 20.40$
CNG	$\$ 1.94$	$\$ 2.17$	$\$ 16.82$
Ethanol (E85)	$\$ 2.96$	$\$ 3.31$	$\$ 25.68$
Propane	$\$ 3.62$	$\$ 4.04$	$\$ 31.35$
Biodiesel (B20)	$\$ 2.31$	$\$ 2.58$	$\$ 20.05$
Biodiesel (B2-B5)	$\$ 2.34$	$\$ 2.61$	$\$ 20.26$
Biodiesel (B99-B100)	$\$ 3.26$	$\$ 3.64$	$\$ 28.30$

[^0]
GASOLINE AND DIESEL PRICES

Average prices for gasoline and diesel as collected by Clean Cities coordinators and other stakeholders (supplemented where necessary with other reference sources for conventional fuels) are illustrated in Table 3. These prices were collected from refueling stations selling both conventional fuels and alternative fuels, and from conventional fuel refueling stations near alternative fuel

Table 3. Average Gasoline and Diesel Prices by Region from Clean Cities Sources

Regular Gasoline Information Reported by Clean Cities (\$/gal)		Diesel Information Reported by Clean Cities (\$/gal)	
Average Price / Standard Deviation of Price	Number of Data Points	Average Price / Standard Deviation of Price	Number of Data Points

New England	$\$ 2.30 / 0.09$	18	$\$ 2.67 / 0.08$	18
Central Atlantic	$\$ 2.29 / 0.12$	34	$\$ 2.62 / 0.13$	33
Lower Atlantic	$\$ 2.19 / 0.12$	79	$\$ 2.52 / 0.09$	46
Midwest	$\$ 2.30 / 0.12$	156	$\$ 2.54 / 0.12$	117
Gulf Coast	$\$ 2.17 / 0.07$	40	$\$ 2.48 / 0.13$	34
Rocky Mountain	$\$ 2.22 / 0.13$	32	$\$ 2.63 / 0.11$	27
West Coast	$\$ 2.60 / 0.20$	59	$\$ 2.96 / 0.20$	57
NATIONAL AVERAGE	$\$ 2.30 / 0.18$	418	$\$ 2.63 / 0.21$	332

Table 4 illustrates average prices as provided by the DOE Energy Information Administration (EIA) on the petroleum information section of its website (http://www.eia.doe.gov/oil_gas/petroleum/info_glance/petrole um.html). These prices are averages of prices from a selection of 800 retail fuel stations across the country. Note that the average nationwide price from EIA matches relatively closely with the averages from the station information collected from Clean Cities stakeholders. Given the relatively good match of averages calculated from EIA and from Clean Cities data, comparisons in this document between conventional fuel prices and alternative fuel prices will be made using prices collected from Clean Cities representatives wherever possible, as these prices are most representative of stations selling both conventional and alternative fuels.

Table 4. EIA Gasoline and Diesel Price Averages

	Gasoline Average Price from EIA, Week of 2/19/07	Diesel Average Price from EIA, Week of 2/19/07
New England	$\$ 2.26$	$\$ 2.64$
Central Atlantic	$\$ 2.28$	$\$ 2.58$
Lower Atlantic	$\$ 2.21$	$\$ 2.42$
Midwest	$\$ 2.29$	$\$ 2.44$
Gulf Coast	$\$ 2.13$	$\$ 2.42$
Rocky Mountain	$\$ 2.60$	$\$ 2.52$
West Coast	$\$ 2.30$	$\$ 2.78$
NATIONAL AVERAGE		$\$ 2.49$

COMPRESSED NATURAL GAS (RELATIVE TO GASOLINE)

Average prices for compressed natural gas for vehicle use are illustrated in Table 5, grouped by region. Information on prices for regular gasoline as provided by Clean Cities representatives is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a voluntary basis. Just over 120 CNG prices were collected in this report ${ }^{3}$.

Table 5. Compressed Natural Gas Average Prices by Region from Clean Cities Sources
$\begin{array}{lcccccc|}\hline & & \begin{array}{c}\text { Natural Gas (CNG) Information } \\ \text { Reported by Clean Cities (\$/gge) }\end{array} & & \begin{array}{c}\text { Regular Gasoline Information } \\ \text { Reported by Clean Cities (\$/gal) }\end{array} \\$\cline { 2 - 3 } \& $\left.\begin{array}{c}\text { Average Price } \\ \text { /Standard } \\ \text { Deviation of Price }\end{array} & \begin{array}{c}\text { Number of Data } \\ \text { Points }\end{array} & & \begin{array}{c}\text { Average Price } \\ \text { /Standard } \\ \text { Deviation of Price }\end{array} & \text { Number of Data Points }\end{array}\right]$

As Table 5 illustrates by region, CNG has a lower price than gasoline for all regions of the country for which prices were obtained except New England, with the largest difference ($\$ 0.91$ per gge) being in the Midwest. On average, CNG costs about $\$ 0.36$ less than gasoline on a per gasoline gallon equivalent basis. Based on the calculated standard deviations of prices, the Gulf Coast and Rocky Mountain regions had very low price variability.

The map to the right illustrates some cost differentials by state for natural gas relative to gasoline, based on differentials between natural gas prices and gasoline prices for each state (versus the regional averages illustrated in Table 5). In this map, negative numbers represent costs for natural gas lower than costs for gasoline. States not highlighted with a color did not have any natural gas data points in the current report. Note that a number of states in the Southwest and West have favorable CNG pricing relative to gasoline. Several Northeastern states have advantageous prices for CNG relative to gasoline as well.

[^1]
COMPRESSED NATURAL GAS (RELATIVE TO DIESEL)

Average prices for compressed natural gas for vehicle use are illustrated in Table 6, grouped by region. Information on prices for conventional diesel fuel as provided by Clean Cities representatives and supplemental sources is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a voluntary basis. Note that the CNG

Table 6. Compressed Natural Gas Average Prices by Region from Clean Cities Sources

	Natural Gas (CNG) Information Reported by Clean Cities (\$/dge)		Diesel Information Reported by Clean Cities (\$/gal)	
	Average Price / Standard Deviation of Price	Number of Data Points	Average Price / Standard Deviation of Price	Number of Data Points
New England	\$2.83 / 0.46	4	\$2.67 / 0.08	18
Central Atlantic	\$2.16 / 0.26	22	\$2.62 / 0.13	33
Lower Atlantic	\$2.28 / 0.55	5	\$2.52 / 0.09	46
Midwest	\$1.56 / 0.40	4	\$2.54 / 0.12	117
Gulf Coast	\$2.04 / 0.09	14	\$2.48 / 0.13	34
Rocky Mountain	\$1.99 / 0.10	26	\$2.63 / 0.11	27
West Coast	\$2.31 / 0.15	48	\$2.96 / 0.20	57
NATIONAL AVERAGE	\$2.17 / 0.29	123	\$2.63 / 0.21	332

As Table 6 illustrates by region, CNG has a lower price than diesel for all regions of the country except New England, with the largest difference ($\$ 0.98$ per dge) being in the Midwest. On average, CNG costs about $\$ 0.46$ less than diesel on a per diesel gallon equivalent basis. Based on standard deviation calculations, CNG appears to have had more variability in price over the March 2007 time period relative to diesel fuel.

The map to the right illustrates some cost differentials by state for natural gas relative to diesel, based on differentials between natural gas prices and diesel prices for each state (versus the regional averages illustrated in Table 6). In this map, negative numbers represent costs for natural gas lower than costs for diesel. States not highlighted with a color did not have any natural gas data points in the current report. Oklahoma, California, Utah, and Missouri are among the states with favorable costs for natural gas relative to diesel.

Average prices for ethanol in an 85% blend with 15% gasoline (E85) are illustrated in Table 7, grouped by region. Information on prices for regular gasoline as provided by Clean Cities representatives is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a

Table 7. Ethanol (E85) Average Prices by Region from Clean Cities Sources

	Ethanol (E85) Information Reported by Clean Cities (\$ per gal)	Regular Gasoline Information Reported by Clean Cities (\$ per gal)		
	Average Price /Standard Deviation of Price	Number of Data Points	Average Price / Standard Deviation of Price	Number of Data Points

Note that E85 has a lower average price per gallon than regular gasoline in all regions but the Central Atlantic (see Table 7). On average, E85 is about 20 cents lower in price than regular gasoline on a per-gallon basis, with the largest average differential (29 cents) being found on the West Coast. Based on the calculated standard deviations in this set of E85 price information, it can be seen that price variability for E85 was somewhat larger than the price variability for gasoline for the March 2007 period.

The map to the right illustrates some cost differentials between E85 and regular gasoline by state, based on differentials between E85 prices and gasoline prices for each state (versus the regional averages illustrated in Table 7). In this map, negative numbers represent costs for E85 lower than for gasoline, and positive numbers represent costs for E85 higher than gasoline. States not highlighted with a color did not have any E85 data points in the current report. Note that a number of states (including Minnesota, Illinois and Wisconsin) have E85 prices lower than gasoline on a per gallon basis. E85 costs are higher than gasoline for several areas of the country, including North Carolina, Virginia, and Maryland.

PROPANE

Average prices for propane are illustrated in Table 8, grouped by region. Information on prices for regular gasoline as provided by Clean Cities representatives is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a voluntary basis. About 55

Table 8. Propane Average Prices by Region from Clean Cities Sources

	Propane Information Reported by Clean Cities (\$ per gal)	Regular Gasoline Information Reported by Clean Cities (\$ per gal)		
	Average Price /Standard Deviation of Price	Number of Data Points	Average Price / Standard Deviation of Price	Number of Data Points

As Table 8 illustrates regionally, propane has a lower price than gasoline on a per-gallon basis in some areas of the U.S., and a higher price in others, based on these collected prices (about 32 cents per gallon more on average nationwide). The Lower Atlantic, Midwest, Rocky Mountain, and West Coast regions have propane priced less than gasoline, at $\$ 0.19$, $\$ 0.03, \$ 0.32$, and $\$ 0.21$ per gallon respectively. Based on calculations of standard deviation in prices, it can be seen that propane prices for vehicle use seems to have varied more than gasoline prices during this sampling period.

The map to the right illustrates some cost differentials between propane and regular gasoline on a per-gallon basis, based on differentials between propane prices and gasoline prices for each state (versus the regional averages illustrated in Table 8). In this map, negative numbers represent costs for propane lower than costs for gasoline, and positive numbers represent propane prices higher than gasoline. States not highlighted with a color did not have any propane data points in the current report. California, Arizona, and Colorado have favorable prices for propane based on the current data.

Average prices for biodiesel in a 20% blend with 80% diesel (B20) are illustrated in Table 9, grouped by region. Information on prices for regular diesel as provided by Clean Cities representatives is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a

Table 9. Biodiesel (B20) Average Prices by Region from Clean Cities Sources

	Biodiesel (B20) Information Reported by Clean Cities (\$ per gal)	Deported by Clean Cities (\$ per gal)		
	Average Price /Standard Deviation of Price	Approximate Number of Stations	Average Price / Standard Deviation of Price	Approximate Number of Stations
New England	$\$ 2.66 / 0.01$	2	$\$ 2.67 / 0.08$	18
Central Atlantic	$\$ 2.35 / 0.71$	2	$\$ 2.62 / 0.13$	33
Lower Atlantic	$\$ 2.49 / 0.07$	52	$\$ 2.52 / 0.09$	46
Midwest	$\$ 2.47 / 0.10$	8	$\$ 2.54 / 0.12$	117
Gulf Coast	$\$ 2.76 / 0.45$	2	$\$ 2.48 / 0.13$	34
Rocky Mountain	$\$ 2.72 / 0.12$	7	$\$ 2.63 / 0.11$	27
West Coast	$\$ 2.77 / 0.32$	6	$\$ 2.96 / 0.20$	57
NATIONAL AVERAGE	$\$ 2.53 / 0.18$	79	$\$ 2.63 / 0.21$	332

As Table 9 illustrates, biodiesel in a B20 blend has an average price per gallon that is generally close to conventional diesel fuel. Based on calculations of standard deviation on B20 prices, variability in B20 prices was relatively close to the variability in price of conventional diesel by region (as would probably be expected, given that 80% of the B20 blend is regular diesel fuel). On average in the U.S., biodiesel in a B20 blend costs about $\$ 0.10$ less per gallon than conventional diesel fuel based on current numbers, a cost difference probably more due to differences in sample sizes rather than a difference in actual B20 prices.

The map to the right illustrates some cost differentials between B20 and diesel on a per-gallon basis, based on differentials between biodiesel prices and gasoline prices for each state (versus the regional averages illustrated in Table 9). In this map, negative numbers represent costs for B20 lower than costs for diesel, and positive numbers represent B20 prices higher than diesel. States not highlighted with a color did not have any B20 data points in the current report. A number of states have B20 prices slightly less than diesel, but more have B20 prices slightly more than diesel (as would be generally expected based on the higher cost of biodiesel).

BIODIESEL BLENDS: LOW-LEVEL (B2-B5)

Average prices for biodiesel in lower-level blends (2-5\% biodiesel in diesel fuel) are illustrated in Table 10, grouped by region. Information on prices for regular diesel as provided by Clean Cities representatives is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a

Table 10. Biodiesel (B2-B5) Average Prices by Region from Clean Cities Sources
$\begin{array}{lcccc|}\hline & \begin{array}{c}\text { Biodiesel (B2-B5) Information } \\ \text { Reported by Clean Cities (\$ per gal) }\end{array} & \begin{array}{c}\text { Diesel Information } \\ \text { Reported by Clean Cities (\$ per gal) }\end{array} \\$\cline { 2 - 4 } \& $\left.\begin{array}{c}\text { Average Price } \\ \text { /Standard } \\ \text { Deviation of Price }\end{array} & \begin{array}{c}\text { Number of Data } \\ \text { Points }\end{array} & \begin{array}{c}\text { Average Price } \\ \text { / Standard } \\ \text { Deviation of Price }\end{array} & \text { Number of Data Points }\end{array}\right]$ voluntary basis. A total of fourteen prices were obtained from areas in the Midwest offering low-level biodiesel blends.

As Table 10 illustrates regionally, average prices for low-level blends of biodiesel are close to, but a bit higher (or lower, depending on region) than average diesel prices. This close tracking with diesel price would be expected, given the small percentage of biodiesel in these blends: the regular diesel price would have much more impact on the overall price of the blend than the biodiesel price. Differences in price between low-level biodiesel blends and regular diesel could be attributed to the small sample size.

The map to the right illustrates some cost differentials between low-level biodiesel blends and regular diesel on a per-gallon basis, based on differentials between biodiesel prices and gasoline prices for each state (versus the regional averages illustrated in Table 10). In this map, negative numbers represent costs for these blends that are lower than costs for diesel, and positive numbers represent prices for these blends that are higher than diesel. States not highlighted with a color did not have any low-level biodiesel blend data points in the current report. All of the states shown have prices for low-level biodiesel blends that are generally close to the price for diesel fuel in these states, based on this limited data sample.

Average prices for highlevel blends of biodiesel (99\% or 100% biodiesel with diesel fuel) are illustrated in Table 11, grouped by region. Information on prices for regular diesel as provided by Clean Cities representatives is also shown. These prices were collected from across the country from Clean Cities Coordinators, fuel providers, and other stakeholders on a voluntary basis. About 14 price points were collected from stations offering B99/B100 for sale across the country.

As Table 11 illustrates regionally, the cost of B99/B100 is higher than the cost of diesel fuel per gallon in the regions for which data were collected (except the Gulf Coast). On average across the nation, B99/B100 is about 68 cents per gallon higher than regular diesel. Based on standard deviation calculations on these price points, it appears that prices for B99/B100 varied more widely in the October 2006 time period than regular diesel.

The map to the right illustrates some cost differentials between high-level biodiesel blends and regular diesel on a per-gallon basis, based on differentials between biodiesel prices and gasoline prices for each state (versus the regional averages illustrated in Table 11). In this map, negative numbers represent costs for these blends that are lower than costs for diesel, and positive numbers represent prices for these blends that are higher than diesel. States not highlighted with a color did not have any high-level biodiesel blend data points in the current report. Prices for high-level blends were higher than for diesel fuel for all the states from which data points were collected except Texas.

COMPARISON OF PRICES OF THIS REPORT VERSUS LAST REPORT

Table 12 below summarizes the average prices collected for this report by region, and compares them to prices collected in the Price Report from October 2006. As this table shows, in general fuel prices for these fuels remained relatively constant between October and March. It should be noted that a portion of the price decrease could be attributed to differing sample sizes and composition between the two reports.

Table 12. Comparison of Prices, Last Price Report versus Current Price Report

		Price for March 2007 Period	Price for October 2006 Period	Price Differential October vs. June
Gasoline (\$ per gallon)	National Average	\$2.30	\$2.22	\$0.08 / 4\%
	New England	\$2.30	\$2.23	\$0.07/3\%
	Central Atlantic	\$2.29	\$2.20	\$0.09 / 4\%
	Lower Atlantic	\$2.19	\$2.13	\$0.06 / 3\%
	Midwest	\$2.30	\$2.18	\$0.12 / 6\%
	Gulf Coast	\$2.17	\$2.11	\$0.06 / 3\%
	Rocky Mountain	\$2.22	\$2.38	(\$0.16) / (7\%)
	West Coast	\$2.60	\$2.43	\$0.17 / 7\%
Diesel (\$ per gallon)	National Average	\$2.63	\$2.62	\$0.01 / 0\%
	New England	\$2.67	\$2.67	\$0.00 / 0\%
	Central Atlantic	\$2.62	\$2.67	(\$0.05) / (2\%)
	Lower Atlantic	\$2.52	\$2.58	(\$0.06) / (2\%)
	Midwest	\$2.54	\$2.57	(\$0.03) / (1\%)
	Gulf Coast	\$2.48	\$2.51	(\$0.03) / (1\%)
	Rocky Mountain	\$2.63	\$2.62	\$0.01/0\%
	West Coast	\$2.96	\$2.74	\$0.22 / 8\%
Compressed Natural Gas (\$ per GGE)	National Average	\$1.94	\$1.77	\$0.17/10\%
	New England	\$2.53	\$2.49	\$0.04 / 2\%
	Central Atlantic	\$1.93	\$2.03	(\$0.10) / (5\%)
	Lower Atlantic	\$2.04	--	--
	Midwest	\$1.39	\$1.24	\$0.15 / 12\%
	Gulf Coast	\$1.82	\$1.89	(\$0.07) / (4\%)
	Rocky Mountain	\$1.78	\$1.89	(\$0.11) / (6\%)
	West Coast	\$2.06	\$1.99	\$0.07/4\%
Ethanol (E85) (\$ per gallon)	National Average	\$2.10	\$2.11	(\$0.01) / (0\%)
	New England	--	--	--
	Central Atlantic	\$2.47	\$3.47	(\$1.00) / (29\%)
	Lower Atlantic	\$2.13	\$2.09	\$0.04/2\%
	Midwest	\$2.05	\$1.97	\$0.08 / 4\%
	Gulf Coast	\$2.01	\$2.08	(\$0.07) / (3\%)
	Rocky Mountain	\$2.12	\$2.23	(\$0.11) / (5\%)
	West Coast	\$2.31	\$2.38	(\$0.07) / (3\%)

Propane (\$ per gallon)	National Average	$\$ 2.62$	$\$ 2.33$	$\$ 0.29 / 12 \%$
	New England	$\$ 2.34$	$\$ 2.53$	$(\$ 0.19) /(8 \%)$

CLEAN CITIES ALTERNATIVE FUEL PRICE REPORT
MARCH 2007
Table 12. Comparison of Prices, Last Price Report versus Current Price Report

| | | Price for March 2007 Period |
| :--- | :--- | :--- | :--- | :--- | Price for October 2006 Period | Price Differential October vs. |
| :---: |
| June |

ILLUSTRATION OF CONVERSION FACTORS FOR FUELS

The standard lower heating values for fuels from the Transportation Energy Databook 24 are listed below.

	Lower Heating Value
Gasoline	115,400 BTU/gal
Diesel	128,700 BTU/gal
Compressed Natural Gas	960 BTU/cubic foot
Ethanol	75,670 BTU/gal
Propane	83,500 BTU/gal
Biodiesel	117,093 BTU/gal

Conversion factors to establish prices in dollars per gasoline equivalent gallon are illustrated below, and were developed using the lower heating values outlined above. In the case of CNG, prices are provided to us in GGE, so no conversion is necessary (the representative heating value of CNG is provided above as a reference). To convert a price from dollars per gallon to dollars per gasoline equivalent gallon, multiply the price per gallon by the conversion factor.

	Conversion factor to GGE
CNG	1.00
Ethanol (E85)	1.41
Propane	1.38
Biodiesel (B20)	0.91
Biodiesel (B2)	0.90
Biodiesel (B100)	0.99

Conversion factors to establish prices in dollars per diesel equivalent gallon are illustrated below, and were developed using the lower heating values outlined above. To convert a price from dollars per gallon to dollars per diesel equivalent gallon, multiply the price per gallon by the conversion factor.

	Conversion factor to DGE
Ethanol (E85)	1.58
Propane	1.54
CNG (in GGE)	1.12
Biodiesel (B20)	1.02
Biodiesel (B2)	1.00
Biodiesel (B100)	1.10

ACKNOWLEDGEMENTS

The authors would like to acknowledge all of the contributors from the Clean Cities community who have provided prices for this report: we sincerely appreciate your continued dedication to the success of this report. The authors would also like to acknowledge the continued support of DOE for developing this report.

WOULD YOU LIKE TO PARTICIPATE?
If you would like to provide prices for alternative fuels in your region and be part of the data collection effort for this report, please contact:

Michael D. Laughlin
New West Technologies, LLC
4351 Garden City Drive, Suite 600
Landover, MD 20785
(301) 429-1180 x26 (phone)
(301) 429-1185 (FAX)
mlaughlin@nwttech.com

DISCLAIMER
This document highlights work sponsored by agencies of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof.

[^0]: ${ }^{1}$ A listing of the conversion factors used appears as an appendix at the end of this report.
 ${ }^{2}$ For ethanol flexible-fuel vehicles, the actual difference in energy cost per mile is somewhat less than would be calculated simply on the difference in energy content of the fuels, as some sources have noted many FFVs can achieve better energy efficiency (miles per unit of energy) on E85 than on gasoline. This effect is not currently included in these calculations as the magnitude of the effect varies by vehicle.

[^1]: ${ }^{3}$ Prices for CNG were provided by the individual stakeholders in gasoline-gallon equivalents from the "price at the pump." It should be noted that the internal conversion factor between the physical quantities of gas delivered and gge was not collected from each of the refueling stations. Regional differences in gas heat content relative to the internal pump conversion factor may change the price per gge: these differences were not determined for this report, however.

