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EXECUTIVE SUMMARY 

 

 

 Transportation energy is an important component of household budgets. Household 

vehicle fuel, one part of total transportation energy costs is over 3% of total household 

expenditures nationwide in the U.S. The average annual expenditure of over $2,000 for vehicle 

fuel (mostly gasoline) is comparable to the total average household expenditures for electricity 

and natural gas combined. However, these average values vary geographically, and lower 

income households can face higher energy cost burdens. The highly resolved data developed in 

this study reveals the variation of household energy burdens across the country and provides 

localized data to support local decision making. 

 

 In this study, we enable the quantification of household transportation energy 

affordability in terms of the transportation energy burden, defined as the percentage of annual 

household income spent on the household vehicle fuel costs. 

 

 In addition to being a large household expenditure, fuel costs are also the most volatile 

cost component of total household transportation expenditures. Household transportation energy 

burden depends on the annual vehicle miles traveled (VMT), fuel price, and vehicle fuel 

efficiency. This study analyzes each of these quantities at high spatial resolution and then 

quantifies resulting burden of household transportation fuel costs at the census tract levels, 

shown in the equation below. This study focuses on fuel costs, but the finer resolution data and 

analysis framework developed and used in this study could also be used to assess additional 

affordability impacts of vehicle ownership costs and other household transportation costs. 

 

Transportation energy burden =  
Cost

Income
= [

𝑚𝑖

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 ∙ 𝑦𝑒𝑎𝑟
×

𝑔𝑎𝑙

𝑚𝑖
×

$

𝑔𝑎𝑙
]  

$

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 ∙ 𝑦𝑒𝑎𝑟
⁄  

 

 There are four major research steps in this study to calculate the household transportation 

energy burden at the Census tract level: 

 

1. Project annual household VMT based on demographic factors using machine-learning 

techniques. We used the 2017 National Household Travel Survey data to develop 

18 different regression models projecting annual household VMT for six census geographic 

regions and three levels of housing density. The geographies selected include the Northeast, 

Midwest, South Atlantic, South Central, Mountain, and Pacific divisions. We used the self-

reported annual miles driven by all the vehicles from the same household in the NHTS as the 

dependent variable in the household VMT model. Eight independent variables were selected 

based on review of related published studies, data availability, and predictive capabilities of 

these variables for our VMT models: number of household workers, number of household 

vehicles, housing unit density, household income, and four variables for household lifecycle 

factors. Lifecycle factors represent the number of children and seniors in the household. For 

each census tract in the United States, we obtained household counts based on income group, 

number of vehicles, and number of workers. There are 11 income groups, 5 vehicle groups, 

and 4 worker groups for a total of 220 different classifications for each census tract. We 

made fine-grained VMT estimates within each tract by feeding in each combination of 



 

ES-2 

income, vehicles, and workers to our model while holding other tract-level variables 

constant. 

 

2. Estimate local differences in vehicle fuel efficiency based on household vehicle 

registrations. Next, we estimated stock-weighted miles per gallon (MPG) by tract by 

combining vehicle registration data (IHS Markit 2018) with the EPA-reported fuel economy 

for each vehicle. The stock-weighted MPG for each fuel type was multiplied by the cost of 

fuel (in $/GGE) to find the cost per mile of operating each vehicle. 

 

3. Determine representative fuel price by census tract. Then, we used high-resolution 

gasoline prices from GasBuddy.com and state-level alternative fuel prices from the U.S. 

Department of Energy to estimate typical household fuel costs for each vehicle at the tract 

level. 

 

4. Quantify the resulting household transportation energy burden by census tract. Finally, 

these three metrics (annual household VMT, stock-weighted MPG, and fuel price) were 

combined with tract-level income data to calculate the household transportation burden for 

every census tract in the U.S.  

 

 Analyzing the resulting household transportation energy burden results demonstrates 

variability across regions and shows sharp disparities in affordability by socioeconomic variables 

and by urban form (defined by housing density). The national average household transportation 

fuel cost has a population-weighted mean value of 3.3% of total income. However, with the 

increased geographical and socioeconomic resolution developed in this study, we found that the 

burden by census tract varies between 0.09% and 23.3% (for households with at least one 

vehicle). Figure ES-1 shows the household burden of transportation fuel cost. Despite increasing 

household VMT for higher household income groups, transportation energy burden decreases as 

the household income increases. States in the South Central region tend to have higher 

percentages of household income spent on vehicle fuel, with lower median household income. 

States in the Northeast region tend to have lower percentages of household income spent on 

vehicle fuel, with higher median household income. 

 

 This analysis identifies how the different factors influence overall burden in different 

areas or groups. Suburban and rural households spend more on vehicle fuel costs compared to 

urban households primarily due to less fuel-efficient vehicles and higher annual VMT. Lower-

income groups have a wide distribution of transportation energy burden than the national 

average, with the most burdened quartile of census tracts in the lowest income group above 

6.3%, but another quartile below 3.6%. In contrast, the highest income group, $125,000/yr and 

above, has the narrowest distribution with half of the tracts falling between 1.8% and 2.6%. We 

can also illustrate the distribution of energy burden by assessing the portion of households that 

spend more than a given level. For example, almost half of households across the U.S. 

experience more than 2% transportation energy burden, while only 5% of households experience 

more than 7% transportation energy costs.  
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FIGURE ES-1  Transportation energy burden by county (grey area = no data) 

 

 

 This variation in transportation energy burden can be largely explained by vehicle fuel 

efficiency, measured as the stock-weighted MPG. Currently, wealthier census tracts have better 

fuel economy on average. Based on this analysis, the adoption of more fuel-efficient vehicles, 

especially among low-income households, could have the biggest impact on improving 

household transportation energy burden. This improvement in fuel efficiency of vehicles would 

result in lower transportation energy burdens, just as a previous 3% improvement in stock-

weighted MPG from 2016 to 2018 saved American households $8.2 billion in vehicle fuel costs. 

 

 This study provides a finer understanding of the spatial variation in household 

transportation energy burden by connecting VMT, vehicle fuel economy, fuel costs, and income 

data at the census tract level. The baseline data and framework developed here can be used to 

assess the spatially distributed impacts of additional transportation energy component costs or 

transportation policies on household transportation affordability. The full dataset is available to 

download and explore. Future research areas include identifying the households and 

communities that have potential to adopt alternative fuel vehicles or transportation modes based 

on their socioeconomic and other environmental factors, and quantifying the resulting 

affordability impacts. 
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1  INTRODUCTION AND LITERATURE REVIEW 

 

 

 In the U.S., on average 21% of household transportation expenditures and 3.3% of total 

household expenditures are for vehicle fuel (1). The average annual expenditure for vehicle fuel 

was over $2,000 in 2018 (mostly gasoline), which is comparable to the total average household 

expenditures for electricity and natural gas combined (1,2,3). Vehicle fuel costs are among the 

most elastic forms of energy consumption with respect to income (4). Further, vehicle fuel cost is 

also the most volatile cost component for household transportation expenses, being strongly 

dependent on oil prices, reaching 5.4% of household expenditures in 2012 (5). Nationwide, 

annual fuel expenditures of light-duty vehicles (LDVs) in 2018 were over $300 billion (6). 

Annual fuel savings could reach $94 billion to $184 billion (2015$) with the adoption of 

advanced vehicle technologies by 2050 (7). However, these benefits do not necessarily accrue 

evenly. Therefore, it is important to quantify the baseline annual household vehicle fuel cost and 

identify the variation by household characteristics and geography. Such a baseline will help 

decision-makers quantify the potential energy and economic impacts of promoting energy-

efficient vehicle and mobility technologies at the household, regional, and national levels. 

Moreover, high levels of aggregation lose sight of variability; therefore, a finer resolution of data 

enables better insight into this spatial variability and can better inform decision-makers. 

 

 Household annual transportation energy costs depend on the vehicle miles traveled 

(VMT), fuel price, and vehicle fuel efficiency. Garceau found that U.S. states with higher 

automobile commute mode shares also have higher rates of VMT per capita, and a larger portion 

of household budgets devoted to transportation (8). For developing the baseline, the key research 

question is to estimate the household annual VMT based on household characteristics and 

geographic factors. The National Household Transportation Survey (NHTS) by the U.S. 

Department of Transportation’s Federal Highway Administration (FHWA) gathers data on daily 

personal travel, including information on household and demographic characteristics, 

employment status, vehicle ownership, trips taken, modal choice, and other related transportation 

data pertinent to U.S. households (9). NHTS also provides a self-reported vehicle annual 

mileage. Oak Ridge National Laboratory (10, 11) estimates annual miles driven by each of the 

NHTS light-duty vehicles, referred as the BESTMILE, using a multi-variate linear regression 

model. The independent variables considered include odometer readings reported in NHTS, 

metropolitan statistical area (MSA) size, household income, vehicles per household, lifecycle 

factors, age, sex, worker status, and census region. However, despite being an excellent source of 

travel information for large geographic areas in the U.S., NHTS is a less suitable source for small 

geographic areas. Moreover, due to limited sample size, NHTS does not cover all census tracts. 

Henson and Goulias concluded that people in different geographic areas travel differently even if 

they share the same socio-demographic characteristics (12). Based on the NHTS, the Bureau of 

Transportation Statistics (BTS) developed a model to estimate average weekday household travel 

patterns including person miles traveled, person trips, vehicle miles traveled, and vehicle trips for 

six geographic areas (13). That finding serves as the basis of the LATCH model when separating 

the NHTS samples by region. LATCH developed a linear regression model to estimate daily 

household travel behavior at the census tract level as a function of household income, vehicles 

per household, workers in household, and lifecycle factors. Lifecycle factor is an indicator 

representing the number of children or senior people in the household. Hass et al. developed an 
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exponential function to predict the vehicle annual miles for Minneapolis–St. Paul area, based on 

four independent variables: household income, household vehicles, population density and 

household size (14).  

 

 The Center for Neighborhood Transportation developed an index to provide a 

comprehensive view of affordability that includes both the cost of housing and the cost of 

transportation at the neighborhood level (15). This study reports that transportation costs, which 

include both annual vehicle ownership costs and fuel cost, are considered affordable if they are 

15% or less of household income. This study uses vehicle odometer readings from the Illinois 

Department of Natural Resources to derive a multi-variable linear regression model to estimate 

the vehicle annual miles as a function of 11 independent variables. These variables include: 

household income, vehicles per household, household size, household density, residential 

density, intersection density, employment access index, job diversity index, commute distance, 

per-capita income, and commuters per household. Several studies have noted that socioeconomic 

variables, such as the number of workers or children per household, influence travel behavior 

(16, 17). These variables are also closely associated with household income and size (14).  

 

 National Household Travel Survey respondents ranked “Price of Travel” as the most 

important of six transport issues considered, indicating that affordability is an important concern 

to transport system users (18). Agrawal et al. conducted in-depth interviews and examined how 

financial stresses such as reduced income and high fuel prices affect low-income families’ travel 

behavior and transport expenditures, as well as the costs and benefits of various travel modes 

(19). Similarly, this study finds that most low-income households are concerned about their 

transportation costs. The U.S. Department of Housing and Urban Development’s (HUD) location 

affordability index reports that vehicle ownership and vehicle fuel cost are 12.7% to 25.2% of 

household income in 20 different U.S. cities (20). Their results show that although large, 

compact cities tend to have relatively high housing costs, these are offset by higher incomes and 

lower transportation costs, such as in the Washington D.C., San Francisco, Boston, and New 

York areas. As a result, they tend to be more affordable overall, considering both housing and 

transport costs, than sprawling, automobile-dependent cities such as Phoenix, Miami, Atlanta, 

and Boston. The U.S. Bureau of Labor Statistics reported that vehicle fuel cost accounted for 

3.5% to 13% of total household income in 2007 (21). Litman quantified the transportation 

affordability in Victoria, Canada by including all household expenditures on purchasing 

transportation services, varying from 10% to 20% (22). He found that (1) lower-income 

households tend to spend less in total but more as a portion of income than higher-income 

households, and (2) suburban and rural households spend more than urban households. Miller et 

al. (23), Mattingly and Morrissey (24) and Saberi et al. (25) found that suburban locations tend to 

spend more on transportation overall (both vehicle fuel and public transit) than city locations. 

Fitzroy et al. found that households in rural and mixed geographic areas tend to drive longer 

distances, but they also drive less fuel-efficient vehicles and do not have the same levels of 

market penetration by electric vehicles (26). 

 

 Moreover, there is extensive literature on the role of population density, built 

environment factors, land use characteristics, social networks, spatial dependency, socio-

demographics, and macroeconomic conditions on household and personal travel behavior. Some 

studies have also analyzed the impact of the choice of residential location, neighborhood 
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characteristics, and vehicle choice on VMT (27–32). Singh et al. analyzed the relative 

contribution of all these factors on household VMT and found that while socio-demographic 

variables explain 12%, and self-selection effects account for 11% of the variability in household 

VMT, 44% of the household VMT remains unexplained, calling for further research in the 

domain (33). While these studies provide good references for the household characteristics and 

geographic factors to be considered when estimating household VMT, they only estimate either 

household daily mileage or annual vehicle mileage. Furthermore, some of the factors mentioned 

in the literature are not available from publicly available standard database. 

 

 All the studies reviewed have quantified transportation affordability of the U.S. at the city 

or state level but not at the tract level, or focus on other countries. Most of these studies combine 

vehicle fuel cost with vehicle ownership cost or housing cost, and only report the total portion of 

household income spent on these items. This study seeks to utilize and synthesis publicly 

available data sets, fill in data gaps, and to focus on the energy component of these costs. This 

study develops a baseline understanding of energy affordability by quantifying transportation 

energy burden as a function of household characteristics and geography at the census tract level 

with full coverage of the United States. Transportation energy burden refers to the percentage of 

annual household income spent on the household vehicle fuel costs. This study applied the 

machine learning technique of gradient boosting to estimate household annual VMT by census 

tract based on household characteristics and geography and used this household VMT to quantify 

the resulting household transportation energy burden.  
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2  OVERALL RESEARCH FRAMEWORK 

 

 

 The household transportation energy burden is defined as the percentage of the household 

annual income spent on vehicle fuel cost. Equation 1 shows that vehicle fuel cost for a household 

is calculated using the vehicle fuel consumption rate, expected local fuel price and annual 

modeled household VMT, and Figure 1 summarizes the overall research steps. In this study, we 

use tract-level averages for fuel economy and fuel price, while our VMT is modeled based on the 

income and demographic characteristics of each household. 

 

Transportation energy burden =  
Cost

Income
= [

𝑚𝑖

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑∙𝑦𝑒𝑎𝑟
×

𝑔𝑎𝑙

𝑚𝑖
×

$

𝑔𝑎𝑙
]  

$

𝐻𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑∙𝑦𝑒𝑎𝑟
⁄  (1) 

 

 

 

FIGURE 1  Overall Research Steps 

 

 

 In Eq. 1, the vehicle fuel economy, fuel price, and income information are compiled from 

exogenous data sources. However, household annual VMT at each census tract is not available 

and therefore is calculated in this work. There were two major considerations in the choice of 

data for the VMT prediction models. First, we selected a set of socioeconomic predictor 

variables supported by the literature as having an influence on household vehicle travel activity. 

Second, we identified data sets for the selected socioeconomic predictor variables that are 

available at a small geographic scale from standardized nationally available sources, such as the 

American Community Survey (ACS) from the U.S. Census (34). These data sources are also 

updated regularly so the results can be updated when new information becomes available. 

VMT

• Developed regression models to project household annual VMT using NHTS 

• Projected household annual VMT for each tract use income, vehicle, and worker 
group cross-tabulations and then weighted VMT by household counts

MPG

• Combined vehicle registration data with vehicle fuel economy by model 

• Estimated the stock-weighted MPG by fuel type

Fuel Price

• Scraped zip code-level gasoline price from GasBuddy.com

• Collected the price of other fuel types from EIA

• Converted the price to tract-level 

Afford

-ability

• Estimated the annual household vehicle fuel costs per tract, using Eq. 1

• Quantified the affordability by tract, zip code, city, county, and state
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 These data sets are combined in Equation 2, which shows the functional dependence 

assumed for annual household VMT in this study.  

 

𝐴𝑛𝑛𝑢𝑎𝑙 𝑚𝑖𝑙𝑒𝑠 𝑝𝑒𝑟 ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑 = 𝑓(location, household workers, household vehicles, 

 housing unit density, household income, household lifecycle factors) (2) 

 

 Choosing data variables that are available from standardized national databases enables 

us to estimate the household VMT for any census tract. Data from U.S. census and travel surveys 

are universally available at a fine resolution at the tract level, while other factors such as fuel 

price and vehicle registration are available at the zip code level. We convert between zip code 

and census tract as needed using the U.S. Department of HUD USPS Zip Code Crosswalk Files 

(35). The resulting model is used to provide a reliable prediction of annual VMT for a typical or 

average household by each census tract, but not to predict the travel behavior for each individual 

household. In particular, model prediction accuracy declines in regions with fewer households 

due to a higher chance of skewed average travel behavior. Household choices of vehicle model 

and trip distance could be based on preferences, rather than the energy efficiency and fuel cost. 

Moreover, certain exogenous factors, such as the ability to telecommute due to the COVID-19 

pandemic, also influence household annual vehicle travel. However, these factors are not directly 

captured in this study. 

 

 After testing several variables and transformations of both dependent and independent 

variables, the final model for predicting the household annual VMT includes eight independent 

variables. The selected variables include the number of household workers, number of household 

vehicles, housing unit density, household income, and four variables for household lifecycle 

factors. These lifecycle factors represent the number of children and seniors in the household 

(see Table 2), which affect travel behavior. For example travel rates increase for people of 

working age and decrease for drivers over 65 years old (36). 

 

 For each census tract in the United States, we obtained cross-tabulated household counts 

based on income group, number of vehicles, and number of workers using the Low-Income 

Energy Affordability Data (LEAD) Tool methodology presented by the U.S. Department of 

Energy (37, 38). There are 11 income groups ($0–5k, $5–10k, $10–15k, $15–20k, $20–25k, 

$25–35k, $35–50k, $50–75k, $75–100k, $100–150k, and $150k+), 5 vehicle groups (0, 1, 2, 3, 

and 4+), and 4 worker groups (0, 1, 2, and 3+) for a total of 220 different classifications for each 

census tract. For our model inputs, we use 3 and 4 to estimate 3+ and 4+ number of workers and 

number of vehicles, respectively. With these household counts in hand, we make fine-grained 

VMT estimates within each tract by feeding in each combination of income, number of vehicles, 

and number of workers to our model while holding other tract-level variables (described later in 

the report) constant. The household counts for each group then serve as weights when computing 

the average VMT in each tract. Using one census tract in suburban Chicago as the example, 

Table 1 demonstrates the resolution of income, number of workers and number of vehicles used 

in this study, showing the percentages of households that fall into each sub-category. Darker 

colors indicate that a larger fraction of households is within this classification, with all categories 

adding up to 100% for each census tract. In this census tract, the most common households are 

those with a single worker and a single vehicle, followed by households with two workers and 

two vehicles. The most common income group is between $50,000 and $75,000. 
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TABLE 1  Percentages of household by number of vehicles, workers and income group for a 

representative census tract (Tract ID: 17031770602). Data calculated for all census tracts. 

Number 

of 

Workers 

Number  

of 

Vehicles 

Annual Household Income (thousand $) 

0-5 5-10 10-15 15-20 20-25 25-35 35-50 50-75 75-100 100-150 150+ 

0 0 1.99% 0.15% 1.13% 0.45% 0.66% 1.13% 0.26% 0.51% 0.09% 0.00% 0.06% 

0 1 1.04% 0.08% 0.25% 0.02% 0.45% 2.09% 0.84% 0.88% 0.40% 0.26% 0.07% 

0 2 0.20% 0.00% 0.23% 0.07% 0.32% 1.32% 0.60% 1.31% 1.41% 0.67% 0.48% 

0 3 0.00% 0.02% 0.00% 0.00% 0.04% 0.12% 0.03% 0.01% 0.01% 0.02% 0.01% 

0 4+ 0.00% 0.00% 0.00% 0.00% 0.01% 0.01% 0.00% 1.14% 0.00% 0.00% 0.00% 

1 0 0.17% 0.20% 0.43% 0.45% 0.11% 0.07% 0.01% 0.11% 0.00% 0.05% 0.00% 

1 1 2.71% 0.37% 1.87% 0.87% 2.03% 4.06% 2.11% 5.36% 2.06% 0.81% 0.31% 

1 2 0.59% 0.08% 0.38% 0.30% 0.76% 1.43% 0.89% 3.55% 1.61% 1.15% 0.57% 

1 3 0.07% 0.00% 0.00% 0.00% 0.44% 0.29% 0.36% 0.40% 0.16% 0.11% 0.05% 

1 4+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.12% 0.03% 1.18% 0.96% 0.55% 

2 0 0.00% 0.00% 0.08% 0.00% 0.00% 0.01% 0.02% 0.36% 0.01% 0.15% 0.01% 

2 1 0.00% 0.01% 0.05% 0.03% 0.13% 0.90% 0.48% 1.11% 1.50% 1.16% 0.57% 

2 2 0.17% 0.00% 0.03% 0.03% 0.12% 0.28% 0.47% 3.01% 2.67% 4.14% 3.21% 

2 3 0.00% 0.00% 0.00% 0.02% 0.03% 0.44% 0.19% 0.88% 0.86% 1.27% 1.06% 

2 4+ 0.00% 0.00% 0.00% 0.00% 0.23% 0.08% 0.00% 0.00% 0.03% 0.03% 0.01% 

3+ 0 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

3+ 1 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 0.00% 0.86% 0.33% 0.36% 0.14% 

3+ 2 0.00% 0.00% 0.00% 0.00% 0.00% 0.13% 0.10% 0.61% 0.33% 0.52% 0.50% 

3+ 3 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.11% 1.21% 1.21% 1.64% 1.35% 

3+ 4+ 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.02% 0.02% 0.70% 1.53% 1.40% 

All All 6.9% 0.9% 4.5% 2.2% 5.3% 12.5% 6.6% 21.3% 14.6% 14.8% 10.4% 

 

 

 This study estimated the effective fuel price at a local level using gasoline prices from 

GasBuddy.com (39), and diesel prices and electricity prices from the Energy Information 

Administration (EIA) (40, 41). This study also estimated LDV stock-weighted vehicle efficiency 

by matching the vehicle registration from IHS Markit (formerly known as the R.L. Polk data) 

with real-world vehicle efficiency measured by the U.S. Environmental Protection Agency 

(EPA) by make, model, fuel type, and model year (42, 43). For each of these data sets, data is not 

directly available at the census tract level, so data was converted to the census tract level using 

the U.S. Department of HUD USPS Zip Code Crosswalk Files (36). 

 

 With this fuel price and vehicle efficiency data, we apply Equation 1 to each income, 

vehicle, and worker group in every census tract to estimate the percentage of annual household 

income that goes towards transportation energy. We also quantify the percentages of households 

in each tract that spend above or below certain affordability thresholds.  
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3  DATA AND METHODOLOGY 

 

 

 In addition to the 2017 NHTS data and LEAD tool-derived data, this study estimated 

household lifecycle factors and tract population from the ACS (34). Data sources used for VMT 

modeling and affordability analysis in this study are documented in Table 1. The newest vehicle 

registration data available to us when we conducted the study was the IHS Markit 2018 data, and 

we used 2018 ACS estimates to develop the baseline.  

 

 
TABLE 2  Data used in this study 

Data Source Description Type 

# of vehicles NHTS (code: HHVEHCNT) (9) 

LEAD (38) / ACS 2018 (34) 

Number of vehicles owned by 

the same household 

Continuous 

# of workers NHTS (code: WRKCOUNT) (9) 

LEAD (38) / ACS 2018 (34) 

Number of people need to go to 

work in the same household 

Continuous 

Household income NHTS (code: HHGAMINC) (9) 

LEAD (38) / ACS 2018 (34) 

Household annual income Continuous 

Housing units 

density 

NHTS (code: HTRESDN) (9) 

LEAD (38) / ACS 2018 (34) 

Housing units per square mile in 

the census tract of the 

household's home location 

Continuous 

Lifecycle factors NHTS (9) 

ACS 2018 (34) 

BTS developed this variable from 

the age of the respondent in the 

NHTS data (13) 

(5<=1+C<18): 1 or more 

children in household, less than 

18 years old in the NHTS data 

but greater than or equal to 

5 years old  

(1P hh<65)]: 1 person household, 

less than 65 years old  

(2+P hh, 0 65+): 2 or more 

person household, all less than 

65 years old  

(2+P hh, 1+ 65+): 2 or more 

person household, at least one 65 

or more years old  

Categorical 

Population ACS 2018 (34) Population per tract Not used as an 

input to the 

VMT prediction 

model 

Vehicle registration IHS Polk Registration, 2018 (41) Number of vehicle registered by 

powertrain type per zip code 

Fuel economy FuelEconomy.gov (43) Vehicle fuel efficiency by make 

and model in miles per gasoline 

gallon equivalent 

Gasoline price GasBuddy (39), EIA (40) $ per gallon by zip code 

Diesel price EIA (40) $ per gallon of diesel (regional), 

then convert to $ per gasoline 

gallon equivalent 

Electricity price EIA (41) $/kWh (state-level), then convert 

to $ per gasoline gallon 

equivalent 

Compressed 

Natural Gas (CNG) 

price 

Alternative Fuels Data Center 

Clean Cities Alternative Fuel Price 

Report, January 2020 (44) 

$ per gasoline gallon equivalent 

(regional) 

 

 



 

8 

3.1  VARIABLES IN VMT MODELING 

 

 The dependent variable in the household VMT model is the self-reported annual miles 

driven by all the vehicles from the same household in the NHTS. We took a log transformation 

of the dependent variable. Eight independent variables are selected based on the literature, data 

availability, and feature importance as determined by our machine-learning models, as shown in 

Figure 2. Feature importance is a way of measuring how much a certain variable affects the 

prediction made by a machine-learning model. The variable with the most explanatory power is 

household income, followed by the number of workers and the number of vehicles in the 

household. Within most census tracts, there is a wide range of income, worker count, and vehicle 

count, and therefore these variables have been disaggregated for analysis, as described in 

Table 1, rather than use a single average value for the census tract. 

 

 

 

FIGURE 2  Feature importance of selected explanatory 

variables  

 

 

 The next most explanatory variable is housing density. We divided the 2017 NHTS 

sample of 129,696 households into six geographic regions (based on Census region/division 

boundaries) and then further disaggregated the regions into three levels of housing density, for a 

total of 18 separate groups. The VMT model produces estimates for each group separately. The 

geographic disaggregation enables more homogenous groupings of the households for the model. 

The geographies selected include the Northeast, Midwest, South Atlantic, South Central, 

Mountain, and Pacific Divisions. Some of these geographies are combined across multiple 

census divisions to have sufficient data for the machine-learning model. The division of the data 

into geographic areas follows from research by Henson and Goulias, which showed that people 
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in different geographic areas travel differently even if they share the same socio-demographic 

characteristics (12). Figure 3 shows the means for annual household vehicle travel as derived 

from the 2017 NHTS for households with at least one vehicle. The inset map shows the 

boundaries of the 6 geographic regions in this study.  

 

 

 

FIGURE 3  NHTS mean household annual miles traveled for each of the 18 geographic 

groupings. Inset: United States map showing the 6 geographic regions. 

 

 

 Urban households drive less than more suburban and rural households, as shown in 

Figure 3. To account for this difference in driving patterns, we classify each census tract as 

urban, suburban, or rural. Classifying urban form as a function of population density allows us to 

assign each census tract to a proper model for travel. BTS classifies census tracts as 

urban/suburban/rural using a method similar to the one used by Nielsen Claritas, Inc. to create 

the urban-rural continuum included in the 2009 NHTS. The classification uses information on 

the population density of a Census tract (converted to a centile score) and on whether the Census 

tract is in an urban area or urban region/division. Without access to the detailed methodology 

used by BTS and NHTS, we used the housing unit density (NHTS code: HTRESDN) to define 

urban, suburban and rural areas. With this method, we create separate regression models for each 

density group as well as use the actual value of HTRESDN as a numerical, independent variable 
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in the regression models. The NHTS data aggregates household density into eight bins, and so 

we rely on these delineations in our analysis. Areas with a density less than or equal to 99 

housing units per square mile are considered as rural. Areas with a density between 100-1999 are 

considered as suburban, while areas with a density above 2000 housing units per square mile are 

considered as urban. These groupings are the closest to neighborhood descriptions recently 

classified by the U.S. Department of HUD (45). 

 

 Finally, the model accounts for lifecycle stage, with four descriptive variables 

representing the number of adults who are of working age or retirement age, the presence of 

children, and the number of occupants in the household. These factors do have correlations with 

travel behavior, but are less predictive than the aforementioned explanatory variables used in the 

model. 

 

 

3.2  REGRESSION ANALYSIS 

 

 We applied three different regression analysis techniques, linear regression (LR), random 

forests (RF) and gradient boosting machine (GBM) on the NHTS samples to train the models. 

We implemented all models in Python, using the Scikit-learn package (46) for LR and RF, and 

using the Catboost package for gradient boosting (47). A random forest is a collection of 

decision trees whose outputs are all averaged for final prediction. A Gradient Boosting Machine 

(GBM) is an additive ensemble learning technique (somewhat similar to a random forest) where 

regression trees are constructed iteratively with each new tree an improvement on the last. Each 

“step” towards the next tree is based on the least-square errors of the previous tree, usually 

optimized via the steepest descent method. The final model is the sum of all the resulting 

regression trees (48). 

 

 To train all three of our machine learning models, our target variable was the base-10 

logarithm of the reported household annual miles in the NHTS data set. The LR was 

implemented using Scikit-learns “LinearRegression” module, which implements ordinary least 

squares (OLS) regression. For the RF, we used Scikit-learn’s “RandomForestRegressor” module 

and set the number of regression trees to 300. On both the LR and RF models, we used 3-fold 

cross-validation to ensure the performances were robust and not over-fitting. The R2 values of 

the best-trained LR and RF models are shown in Figure 4. 

 

 To train our GBM, we used the NHTS variables described in Table 2. We declared life-

cycle factors as categorical and the rest as continuous. This is not technically the case for the 

NHTS dataset, because all of the selected variables are ordinal. However, treating them as 

numerical improves the model’s ability to generalize to the U.S. census data. There was no 

decrease in performance when treating the variables this way. Next, we split the entire data set 

into a training set (90% of the data) and test set (10%) using scikit-learn’s “train_test_split” 

function. On the training set, we perform hyperparameter optimization. This is a grid search on 

three different parameters: number of iterations, maximum decision tree depth, and learning rate, 

for a total of 120 different runs. Built into this parameter space sweep is 5-fold cross-validation, 

further splitting the training data into five permutations of training and validation sets. This is 

performed on each combination of parameters. The set of parameters that performs best in the 
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cross-validation (i.e., least amount of overfitting and lowest Root Mean Square Error) is 

returned. We chose the following hyperparameters: a learning rate of 0.1, maximum tree depth of 

5, and maximum iterations of 1000. 

 

 After assessing the R2 and Root Mean Square Error (RMSE) of LR, RF, and GBM 

models, we ultimately chose the GBM to determine annual household VMT in this study due to 

consistently better performance over the other two models across the 18 different geographic 

groupings. Figure 4 shows the test R2 performance comparison of our LR, RF and GBM models 

when applied in the entire NHTS dataset, indicating that the GBM has the best predictive 

performance after about 200 training iterations. 

 

 

 

FIGURE 4  Performance comparison (R2) of LR, RF and 

GBM. 

 

 

 After the GBM hyperparameter optimization, the entire data set is divided into six 

regions and three urban groups (18 total groups), since we find that many regions have better 

performance when trained individually than when trained as part of the entire data set. A new 

GBM is trained on each group using the selected hyperparameters so that each region and 

density level has its own model. In this step, a validation set is also derived from each region’s 

training set to implement early stopping and to prevent overfitting. Each trained model is saved 

to be used later for tract-level VMT predictions on census data. The training performance of each 

regional model is shown in Figure 5 by comparing predicted annual household VMT with self-

reported VMT by household. Taken at face value, the R2 are not impressive, but our goal is not 

to accurately predict every single household. We aim to make a reasonable estimate of household 

VMT for any given tract. A difference between predicted log(VMT) and actual log(VMT) (from 

NHTS) appears to be lognormal distributed, and tapers pretty quickly, as shown in Figure 6. 

Literature shows high R2 values for models predicting daily miles and daily trips. Our R2 values 

are comparable with the values reported in (14), which also estimates annual miles. The H+T 

Index from the Center for Neighborhood Transportation has relatively higher R2 when projecting 
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FIGURE 5  Training performance (R2) of each regional model using the GBM 
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FIGURE 6  Distribution of errors: predicted log10(VMT) 

minus surveyed log10(VMT) 

 

 

vehicle annual miles by fitting additional parameters to improve their model performance (15). 

However, those additional variables are difficult to find at the zip code or census tract level from 

standardized databases. The literature also shows that estimating household VMT is a difficult 

problem because a significant portion of household VMT remain unexplained by the social-

economic and demographic factors. Table 3 compares the regression estimates to the weighted 

values calculated from the NHTS sample in each Census region/division and urban group. The 

regression estimates are population-weighted means, while NHTS values are weighted using the 

household/vehicle weighting factor (WTHHFIN). All regression estimates are close to the NHTS 

mean values, and are within a 90% confidence interval of the mean values.  

 

 
TABLE 3  Comparison NHTS Mean Values and Regression Estimates 

Region Density 

NHTS 5th 

percentile NHTS Mean 

NHTS 95th 

percentile 

Mean Regression Estimates  

(this study) 

Northeast 

Urban 1,000 13,365 35,293 12,076 

Suburb 2,000 20,085 44,000 23,431 

Rural 2,300 22,278 49,000 24,482 

Midwest 

Urban 1,200 15,530 37,875 16,248 

Suburb 1,500 19,364 44,000 20,668 

Rural 2,000 23,753 54,500 24,892 

South Atlantic 

Urban 1,200 15,070 33,620 15,464 

Suburb 1,200 20,057 47,356 20,051 

Rural 1,000 22,813 54,788 22,255 

 

 



 

14 

TABLE 3  (Cont.) 

Region Density 

NHTS 5th 

percentile NHTS Mean 

NHTS 95th 

percentile 

Mean Regression Estimates  

(this study) 

South Central 

Urban 1,211 16,580 40,000 17,877 

Suburb 1,301 21,019 49,671 19,768 

Rural 1,200 23,289 59,000 23,255 

Mountain 

Urban 1,200 16,155 36,350 17,140 

Suburb 1,200 19,006 41,337 18,736 

Rural 1,308 20,585 48,675 21,947 

Pacific 

Urban 1,200 16,414 37,000 16,817 

Suburb 1,460 18,803 40,000 22,146 

Rural 1,500 19,150 46,028 21,333 

 

 

3.3  VMT MODELING BY CENSUS TRACT 

 

 In this analysis, VMT modeling is a function of eight variables shown in Figure 2: 

household income, number of workers, number of vehicles, housing density, and four variables 

representing the life stages of the household occupants. Every census tract has a housing density, 

similar to as described in Table 1, we disaggregate households with specific household income, 

number of workers, and number of vehicles into 264 different classifications. We cannot directly 

distinguish the demographics of the occupants of a household from knowledge of the number of 

workers, so we assumed that these variables are independent and that the distribution of 

households with different life stages is equivalent across all of these classes within each census 

tract. 

 

 We estimated VMT using the machine-learning model for each classification. The 

modeled VMT and subsequent burden calculations used a single value for each income bin, 

using the midpoint of each bin except for the highest-income bin, which was assumed to be at 

$175,000. Table 4 shows the calculated VMT for each of these classifications in a given census 

tract outside of Chicago, Illinois. Household VMT is assumed to be zero in households with no 

vehicles. As described qualitatively, VMT generally increases as household income increases for 

all other combinations of workers and vehicles. Household VMT also increases with higher 

vehicle ownership, though per-vehicle VMT tends to decrease, with secondary vehicles being 

driven less intensively than primary vehicles. Likewise, VMT increases as the number of 

workers in a household. However, none of these functions are strictly monotonic, indicative of 

the complexity of the data fed into the machine-learning model. When multiplied by the 

population distribution across the 220 classes presented in Table 1, the average annual travel 

distance per household within the census tract can be determined. Calculations for households 

with four or more vehicles (from Table 1) use VMT for 4 vehicles to match the available data. 
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TABLE 4  Calculated VMT for a fixed number of vehicles, workers and income group for a 

representative census tract (Tract ID: 17031770602). Data calculated for all census tracts. 

Number 

of 

Workers 

Number 

of 

Vehicles 

Annual Household Income (thousand $) 

0-5 5-10 10-15 15-20 20-25 25-35 35-50 50-75 75-100 100-150 150+ 

0 0 0 0 0 0 0 0 0 0 0 0 0 

0 1 2,972 2,972 3,234 4,013 4,013 5,620 7,574 8,192 9,390 8,799 9,016 

0 2 5,986 5,986 4,796 5,511 5,511 7,586 10,213 11,325 13,359 14,228 15,853 

0 3 6,177 6,177 5,103 5,648 5,648 7,615 9,594 10,576 12,144 12,469 14,915 

0 4 3,215 3,215 2,951 5,393 5,393 8,761 11,384 12,718 15,565 15,949 18,541 

0 5+ 4,200 4,200 3,805 6,476 6,476 10,360 12,977 13,443 15,948 17,075 20,237 

1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 6,614 6,614 7,097 7,419 7,419 8,267 9,695 10,168 11,978 12,824 13,733 

1 2 11,305 11,305 8,830 9,361 9,361 10,836 12,628 13,491 16,107 18,703 20,642 

1 3 10,348 10,348 8,356 8,802 8,802 10,200 12,174 13,181 15,976 19,249 22,099 

1 4 4,959 4,959 3,548 7,065 7,065 9,586 11,342 12,282 15,801 19,258 22,345 

1 5+ 5,581 5,581 3,962 7,321 7,321 9,786 10,949 10,465 13,714 19,535 24,310 

2 0 0 0 0 0 0 0 0 0 0 0 0 

2 1 10,860 10,860 9,919 9,529 9,529 9,960 10,965 11,296 13,262 14,619 15,529 

2 2 19,010 19,010 12,725 12,750 12,750 13,054 15,673 16,373 18,504 20,635 22,114 

2 3 16,457 16,457 12,048 12,370 12,370 12,120 15,185 16,091 18,428 21,443 23,810 

2 4 20,120 20,120 14,553 12,807 12,807 12,640 14,148 14,815 17,565 21,090 24,069 

2 5+ 21,518 21,518 16,081 14,681 14,681 14,888 15,802 13,880 16,961 23,737 28,890 

3+ 0 0 0 0 0 0 0 0 0 0 0 0 

3+ 1 7,572 7,572 10,028 12,251 12,251 13,084 13,639 13,045 14,291 14,830 15,389 

3+ 2 9,865 9,865 12,774 17,342 17,342 18,844 21,310 20,409 21,223 22,175 23,094 

3+ 3 8,371 8,371 12,390 17,287 17,287 18,629 21,356 20,548 21,514 22,973 24,948 

3+ 4 16,254 16,254 21,747 19,520 19,520 19,145 19,487 18,431 19,802 22,637 26,815 

3+ 5+ 16,724 16,724 21,805 20,115 20,115 20,028 19,368 14,851 15,372 24,346 31,428 

 

 

3.4  VMT MODEL VALIDATION 

 

 For validation of our VMT model, we compared our VMT regression estimates with both 

the national NHTS and with more local travel surveys. Figure 7 shows the calculated values for 

household travel across the same 18 geographic groupings, as compared with NHTS. Relative to 

the original NHTS data (as presented in Figure 3), there is good agreement by region between 

our modeled VMT and the average of the sampled VMT in NHTS. The largest differences are 

that our model outputs higher suburban VMT in the Pacific and Northeast regions. This is 

possibly because our modeled VMT is strongly dependent on household income (as can be seen 

for a single tract in Table 4), and these areas have large populations with relatively high incomes. 
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FIGURE 7  Mean household annual miles traveled for each of the 18 geographic groupings: 

NHTS vs. Model Estimates. Inset: United States map showing the 6 geographic regions. 

 

 

 For local validation, we considered regional household travel surveys conducted by 

Chicago Metropolitan Agency of Planning (CMAP) and The California Department of 

Transportation (Caltrans) (49, 50). These regional household travel surveys report daily vehicle 

travel activities in Chicago from 2007 to 2008, and in California from 2010-2013. To compare to 

the annual data in NHTS, we multiplied the daily vehicle mileages from the same household by 

365 days. This method likely overestimates the annual household vehicle travel and may 

introduce a lot of noise due to the shorter sampling period. Figure 8 shows the comparison 

between regression estimates (Y-axis) and CMAP annual estimates (X-axis) per tract, by 

household income group. Each dot represents a tract from the survey, and the color of each dot 

represents the average household income within that tract. In general, our estimation is higher 

than the annual CMAP values. In addition to the possible overestimation from converting from 

daily to annual travel, our model likely overestimates travel for urban areas like Chicago in 

particular, because Chicago is the densest urban area in the Midwest. All urban areas in the 

Midwest share the same regression model, and higher density is correlated to lower household 

VMT. Moreover, the VMT model performs better for middle-income groups, while it tends to 

overestimate the VMT driven by higher income households and underestimate the VMT driven 

by the lower income households. In other words, the elasticity of the CMAP VMT data with 
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respect to income is lower than our VMT model. A similar trend was observed when we 

compared our modeled VMT with values derived from California Household Travel Survey, as 

shown in Table 5. Percentages represent the portion of our regression estimates that are higher 

than the values derived from the travel survey. A percentage of 50% reflects an unbiased 

estimate where half of the estimates are above and half of the estimates are below the survey 

data. For incomes near or above the median, our model largely agrees with the California survey 

data, but our model tends to underestimate travel of the lowest income groups. 

 

 

  

FIGURE 8  Comparison of modeled VMT and Chicago regional travel 

survey (Each dot represents a tract, CMAP annual VMT are extrapolated 

from daily miles) 

 

 
TABLE 5  Regression Estimates vs. California Household Travel Survey Estimates 

Income 

Group 

($/yr) 

5000 17500 30000 42500 62500 87500 125000 175000 225000 275000 

% > travel 

survey 

estimates 

25% 39% 42% 47% 51% 54% 54% 56% 55% 54% 

Stock-Weighted MPG 
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3.5  STOCK-WEIGHTED MPG 

 

 Light-duty vehicle registration data was sourced through IHS Markit, yielding the 

number of each vehicle make, model, and model year at the zip code level (42). This registration 

database was combined with the EPA-reported fuel economy to find the vehicle efficiency, 

measured in MPG for each vehicle (43). This process gives fuel economy for approximately 99% 

of vehicles in the IHS Markit registration data. The Fuel Economy Guide does not include 

vehicles older than 1984, and some vehicles in the registration database do not have sufficient 

information to ascertain their fuel economy. For each vehicle, we convert the fuel economy into 

miles per gallon of gasoline-equivalent (MPGGE) in order to average fuel economy across 

powertrains. The higher heat content of diesel fuel requires a factor of 0.885 to convert from a 

gallon of diesel to a gallon of gasoline. For electric vehicles, the conversion factor of 

33.7 kWh/GGE was used (51). For plug-in hybrid vehicles, the Fuel Economy Guide uses the 

SAE J2841 multi-day individual utility factor to estimate the relative electricity and gasoline use 

for each vehicle, in order to estimate the electricity and gasoline fuel cost separately (52). Within 

each zip code, the stock-weighted MPG was calculated using the harmonic mean of MPGGE 

weighted by the number of registrations for each fuel type. The stock-weighted MPG for each 

fuel type was multiplied by the cost of fuel (in $/GGE) to find the cost per mile of operating each 

vehicle. Figure 9 shows the stock-weighted MPG across the U.S., varying from 15.6 to 23.3 at 

the county level. 

 

 

 

FIGURE 9  Stock-weighted vehicle MPG by county (2018 vehicle registration data) 
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 Adoption of more fuel-efficient vehicles, either alternative fuel vehicles (AFVs) or newer 

gasoline vehicles with higher fuel economy, could lead to higher stock-weighted MPG. For 

example, Figure 10 shows that zip codes with newer vehicles have higher stock-weighted MPG 

in Washington D.C. Figure 11 also shows a positive correlation between number of alternative 

fuel vehicles adopted and stock-weighted MPG by zip code. AFVs include hybrid electric 

vehicles (HEVs), plug-in electric vehicles (PEV) and fuel-cell vehicles (FCEVs) which in 

general have higher fuel efficiency than their gasoline counterparts. Stock-weighted vehicle 

MPGs at the zip code level were then crossed-walked with census tracts for the affordability 

calculation. 

 

 

 

FIGURE 10  Stock-weighted MPG and average vehicle age by zip code in Washington D.C. 
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FIGURE 11  Alternative fuel vehicles adopted vs. stock-weighted MPG  

(Each dot represents a zip code in the U.S.) 

 

 

3.6  FUEL PRICE 

 

 To quantify the fuel price, we started with the finest resolution price data available for 

gasoline, diesel, electricity, and natural gas in this analysis. Since gasoline-fueled internal 

combustion engine vehicles (ICEVs) currently make up a vast majority of the private vehicles in 

the United States, and because there is a large degree of geographic variability, high-resolution 

gasoline price data are required. For this study, we scraped data from GasBuddy.com at the zip 

code level (39). GasBuddy data is populated by user-reported gasoline prices at individual 

stations, which are then aggregated to larger areas. To validate our use of GasBuddy data, we 

compared the data with historical fuel prices from the Energy Information Administration (EIA) 

(40). The EIA provides weekly gasoline prices for only nine states and ten metropolitan regions, 

which does not suffice for our study. At the national level, these two data sources have an 

average difference of $0.014/gallon, or 0.6% of the total fuel cost, since January 2014. The two 

data sets agree with a Pearson correlation coefficient of 0.999. 

 

 Gas prices are neither uniform nationwide, nor are they constant in time. Gasoline prices 

have varied state-to-state by approximately 30 cents/gallon on average over the last six years. To 

further validate use of this data, we compare GasBuddy data with the nine states for which EIA 

presents data. Since January 2014, these data agree to within 2.2% for each state. At the state 

level, GasBuddy price data is biased higher than EIA, though typically only a few cents per 

gallon. At the metropolitan area, GasBuddy and EIA only compare similar geographies for 
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Cleveland, Denver, and Houston. In these three metropolitan areas, GasBuddy and EIA generally 

agree on gasoline prices to within 1%. 

 

 GasBuddy reports gasoline prices at the zip code level. These data were acquired for 

30,635 zip codes nationwide. However, consumers may choose to fill up outside of their home 

zip code. Even within a city, fuel prices can vary based on location and marketing decisions, and 

consumers can select their fueling station accordingly. To account for this, we averaged gasoline 

prices by 3-digit zip code prefixes, which is a grouping by postal service sectional center facility, 

rather than by the entire 5-digit zip code, which is comparable in size to the census tract on 

average. The 30,635 zip codes with gasoline prices in the GasBuddy data are thus aggregated 

into 886 ZIP3 regions. This also serves to minimize statistical fluctuations from zip codes with 

outliers or missing gasoline prices. Figure 12 shows the gasoline price by ZIP3 in February, 

April, June, and September 2020. Zip codes trend from low on the east coast to high on the west 

coast, and a handful of specific states are labeled on the graph for clarity. 

 

 As demonstrated in Figure 12, gasoline prices have a high degree of temporal variability, 

but the relative fuel prices across the country exhibit similar trends. From January 2014 through 

July 2020, the average price for gasoline was $2.552, with a standard deviation of $0.441, or 

17% of the total price. The gasoline prices in this study are based on a temporal snapshot of 

February 26, 2020. As described on the GasBuddy website: “The [Full Day Average] is 

published at 3:00AM eastern time and is an average of the last priced received at each station for 

the corresponding geography being viewed. The average price benchmarked for a particular day 

will be what was listed as the Full Day Average on that particular day.” (53) On this date, the 

national average for regular unleaded gasoline as reported by GasBuddy was $2.46. This is in the 

48th percentile of gasoline prices since January 2014, showing that this is a representative 

selection for gasoline prices at the national level. We further compared gasoline prices with high 

geographical precision. We compared the national gas prices at zip code level (or ZIP3) in 

February 2020, April 2020, June 2020, and September 2020. Over this timeframe, the crude oil 

price changed dramatically, as the COVID-19 pandemic greatly reduced travel demand (54) and 

disagreements between the Organization of the Petroleum Exporting Countries (OPEC) and 

partner countries on crude oil production cuts created volatility in the market (55). Average 

gasoline price dropped from $2.46 to $1.77/gallon from February 2020 to April 2020. 

Nonetheless, the fuel prices in every region were impacted, and localities with higher gasoline 

prices in February largely maintained higher prices in April, as indicated by a Pearson 

correlation coefficient of 0.821 between these two datasets. Over this timeframe, gasoline prices 

tended to drop the most in the Great Lakes region (e.g., MI, WI, IL); this local variability 

underscores the need for high geographic fidelity in gasoline prices. In Summer 2020, gasoline 

prices returned toward their values in February 2020, with a Pearson correlation coefficient of 

0.918 between February and June data, indicating fewer low-price outlier zip-codes.  
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FIGURE 12  ZIP3-aggregated gasoline prices in February, April, June, and September 2020. 

Local gasoline prices are highly correlated throughout the year, with consistently higher in 

the West and near major cities (e.g., New York, Chicago). February 2020 fuel prices were 

used in this study.  

 

 

 As with MPGs, the fuel cost figures per zip code were cross-walked with census tracts for 

the driving cost calculation. In addition to gasoline-fueled ICEVs, we consider vehicles that use 

the following alternative fuels: diesel, electricity, and CNG. Diesel prices ($/gallon of diesel) are 

from February 2020 EIA data, aggregated to the five Petroleum Administration for Defense 

Districts (40). Electricity prices ($/kWh) come from EIA data on the state average residential 

price from February 2020 (41). CNG prices ($/GGE) are from the January 2020 Alternative 

Fuels Data Center Clean Cities Alternative Fuel Price Report (44). Due to the data limitations at 

the zip code level, we did not consider the premium gasoline price used by some vehicle models. 

 

 

  



 

23 

3.7  DRIVING COST CALCULATION 

 

 We used the following equation to calculate cost per mile driven for each census tract: 

 

 𝐶 (
$

mile
) =

1

∑ 𝑁𝑖𝑖
× ∑

𝑃𝑖  × 𝑁𝑖

𝑀𝑃𝐺𝐺𝐸𝑖
,𝑖  (3) 

 

where 𝑖 is a specific type of fuel (gasoline, electricity, diesel, or CNG), 𝑃𝑖 is the price per 

gasoline-gallon equivalent of fuel 𝑖, 𝑁𝑖 is the number of vehicles that use fuel 𝑖 in the tract, and 

𝑀𝑃𝐺𝐺𝐸𝑖 is the stock-weighted MPGGE of vehicles that use fuel 𝑖 in the tract. As with the fuel 

economy, we converted the fuel price for all fuels (electricity, diesel, and CNG) to $/gasoline 

gallon equivalent within each tract, using lower heating values as appropriate. Because E85 fuel 

is generally more expensive than gasoline (44), in addition to the fact that flex-fuel vehicles 

(FFVs) run on E85 less than 2% of the total VMT nationally (6), we assumed that FFVs operate 

using gasoline rather than E85. The fuel economy and cost calculations presented here were then 

combined with census information on the number of vehicles per household and the above 

calculations on the number of miles per vehicle to find the total annual household cost for 

transportation fuels, per Eq. 1. 
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4  RESULTS AND DISCUSSION 

 

 

 We report here the household VMT and transportation energy burden by census tract. 

Given this large dataset, the discussion below highlights key trends. The full dataset is available 

to download and explore.  

 

 

4.1  HOUSEHOLD VMT 

 

 There is wide variation in average household VMT by county across the U.S., from 2,507 

to 40,985, as shown in Figure 13. All tract-level VMT and burden results are weighted by the 

number of households, then aggregated to a higher regional level (e.g., county, state, national) by 

population. The national average annual household VMT is 18,515. We used the VMT models 

developed for the Pacific West region to estimate the VMT for households in Alaska and Hawaii. 

However, households in these two states may have unique travel patterns, which are not captured 

by any of the 18 different VMT models we have developed for the lower 48 states. Future 

research is needed to improve models for these two states. 

 

 

  

FIGURE 13  Household annual VMT by county (grey area = no data)  

 

 

 Household annual VMT varies by housing unit density and by region. Table 3 shows that 

suburban and rural households have higher annual VMT than the urban households across all 

regions. Midwest rural households have the highest annual VMT, followed by Northeast rural 

and South Central rural households, as shown in Figure 7. Households in the Pacific and 

Mountain regions tend to have lower annual VMT. 
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 Moreover, household annual VMT varies by income group, as shown in Figure 14. In this 

figure, each dot represents a single census tract. The census tracts are binned by average income 

and presented in a raincloud plot, where individual data points are overlaid on a box-and-whisker 

plot, where the boxes represent the first and third quartiles, and the whiskers represent 1.5 times 

this interquartile range. This is plotted alongside a half-violin plot that represents the probability 

distribution function for census tracts within each income bin (56). Note that the largest 

probability distribution functions are in the income groups with annual incomes between $40,000 

and $100,000. Because we use the regression model to determine household annual VMT, and 

there are outliers in the underlying explanatory variables in the model, some outliers in VMT are 

also generated in this process. For example, the highest estimated VMT in the country is a census 

tract centered on a naval shipyard in Kitsap County, WA, on the Puget Sound, where the average 

income is roughly $154,000/year. The tract with the highest transportation energy burden is near 

a college campus, with income demographics skewed by college student housing, and housing 

density skewed by the presence of a golf course and football stadium. These types of census 

tracts are not particularly common, but the calculations of VMT and income at the tract-level are 

reasonable based on their demographic profiles. In order to make the figures easy to read, we 

truncated our VMT figure at 80,000 miles/yr, and the burden figure at 20%, without removing 

any samples from the subsequent energy burden calculation. 

 

 VMT increases as the average income increases. The average household annual VMT 

increases from 11,000 to 20,000 and then to 30,000 for the income groups $0-19,999/yr, 

$60,000-79,999/yr, and $125,000/yr and above, respectively. Notwithstanding some outliers in 

other income bins, higher-income groups have the widest distributions of annual VMT, possibly 

due to the diversity of the numbers of vehicles owned by this group.  

 

 

 

FIGURE 14  Household annual VMT by average tract income (each dot represents a tract) 
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4.2  HOUSEHOLD ENERGY BURDEN 

 

 The variations in household VMT, fuel price and stock-weighted MPG all contribute to 

the variation in the transportation energy burden (quantified from Equation 1) shown in 

Figure 15. At the national level, the distribution of household transportation energy burden has a 

mean value of 3.3%. However, county-level burden ranges from 0.5% to 8.4%, highlighting the 

importance of geospatial data. Clusters of counties with lower transportation energy burden align 

with the metropolitan areas. This is due to both the higher household income in metropolitan 

areas compared to rural areas and the reduced VMT in urban areas. 

 

 

 

FIGURE 15  Transportation energy burden by county (gray area=no data) 

 

 

 Table 6 compares modeled VMT as a function of population density. Nationwide, rural 

households drive further and have a higher transportation energy burden than suburban and 

urban households. Rural households have higher burden for all regions, as shown in Table 7. 

Pacific rural households have the highest portion of their income spent on transportation fuel, 

followed by South Central rural and Midwest rural areas. Figure 16 and Table 8 show that 

despite increasing household VMT, transportation energy burden improves as the household 

income increases, with the average burden trending from 6.5% to 3.3%, then to 2.2% for census 

tracts where the average incomes are in the ranges from $0-19,999/yr, $60,000-79,999/yr, and 

$125,000/yr and above, respectively. In contrast to the VMT trend, lower-income groups have 

the widest distribution of transportation energy burden, with the most burdened quarter of tracts 

in the lowest income group above 6.3%, but another quarter below 3.6%. The highest income 

group, $125,000/yr and above, has the narrowest distribution with half of the tracts falling 

between 1.8% and 2.6%.  
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TABLE 6  Nationwide Household VMT and Transportation Energy Burden by Urban Type 

Urban Type 

Household Annual VMT Burden 

Median 5th percentile 95th percentile Median 5th percentile 95th percentile 

Rural 20,465 12,617 30,392 4.0% 2.8% 5.6% 

Suburb 17,549 9,111 31,724 2.9% 1.9% 4.9% 

Urban 13,418 4,593 24,023 2.8% 1.0% 5.1% 

 

 
TABLE 7  Regional Household VMT and Transportation Energy Burden by Urban Type 

Region 

Urban 

Type 

Household Annual VMT Burden 

Median 5th percentile 95th percentile Median 5th percentile 95th percentile 

Midwest 

Rural 23,116 22,565 14,921 31,047 4.2% 3.1% 

Suburb 18,610 16,811 9,210 29,251 2.9% 2.0% 

Urban 14,786 13,217 5,720 24,246 3.0% 1.6% 

Mountain 

Rural 19,761 18,235 11,867 29,924 3.9% 2.7% 

Suburb 17,612 16,109 9,392 28,583 2.9% 1.9% 

Urban 15,228 14,667 8,350 22,239 3.3% 2.0% 

Northeast 

Rural 22,112 20,803 15,276 31,229 3.9% 2.6% 

Suburb 22,198 19,940 10,177 36,749 2.6% 1.8% 

Urban 11,435 10,493 2,752 22,607 2.1% 0.5% 

Pacific 

Rural 20,203 19,306 11,961 31,106 4.3% 2.9% 

Suburb 21,197 19,434 10,924 34,759 3.6% 2.2% 

Urban 15,481 14,919 7,849 24,041 3.4% 1.8% 

South 

Atlantic 

Rural 19,663 18,553 11,456 29,374 3.8% 2.7% 

Suburb 18,723 16,965 8,687 30,825 2.7% 1.8% 

Urban 14,967 13,450 4,862 25,377 2.4% 1.1% 

South 

Central 

Rural 21,014 19,843 12,108 29,685 4.0% 2.8% 

Suburb 18,771 16,698 8,211 29,660 2.9% 1.8% 

Urban 16,350 14,819 7,482 26,393 2.8% 1.7% 
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FIGURE 16  Transportation energy burden by average tract income (each dot represents a tract) 

 

 
TABLE 8  Transportation Energy Burden by Tract Average Income 

Income Range 

Number of 

Tracts 

Average 

Burden 

Median 

Burden 

Minimum 

Burden 

Maximum 

Burden 

$0 – $20,000 208 6.5% 3.6% 0.3% 21.4% 

$20,000 – $40,000 7,876 3.9% 3.6% 0.2% 20.4% 

$40,000 – $60,000 22,748 3.7% 3.6% 0.2% 23.4% 

$60,000 – $80,000 18,782 3.3% 3.3% 0.2% 13.9% 

$80,000 – $100,000 9,923 2.9% 3.3% 0.2% 11.4% 

$100,000 – $125,000 6,213 2.6% 2.5% 0.1% 21.4% 

$125,000+ 5,832 2.2% 2.2% 0.1% 15.7% 

 

 

 At the state level, the average transportation energy burden also declines as income 

increases, as shown in Figure 17. Bubble size stands for the population of the state, and the 

colors of the bubbles represent the geographic regions. Average transportation energy burden by 

state ranges from 1.4% to 4.0%. States in the South Central region tend to have higher 

percentages of household income spent on transportation energy, with lower median household 

income. States in the Northeast region tend to have lower percentages of household income spent 

on transportation energy, with higher median household income. South Dakota, Mississippi, and 

California have the highest household transportation energy burden, about 4.0%, while 

Washington, D.C. is the lowest, about 1.4%, followed by New York at 2.2%. 
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FIGURE 17  Transportation energy burden by median income 

 

 

 The variation in transportation energy burden at the state level is largely explained by the 

variation in on-road vehicle fuel efficiency. Table 9 shows a comparison of each of the 

components of the burden equation across each state. The components shown are stock-weighted 

fuel consumption rate in gasoline-gallon-equivalent per mile (GPM), median household income 

at the tract level, average household annual VMT, and fuel price ($/gallon equivalent). The 

color-coding shows how each variable correlates to state average burden, with warmer (orange) 

colors representing states that are more affordable on that metric, and cooler (purple) colors 

representing higher burden. Darker colors are further from the national average, presented in the 

bottom row, with the deepest colors being three standard deviations from the mean. New York 

State has the lowest household transportation energy burden among states at 2.24%, though 

Washington, D.C. has a lower burden of 1.4%. South Dakota has the highest transportation 

energy burden, 3.95%, due to higher annual VMT and lower on-road vehicle fuel efficiency 

compared to most other states. Washington, D.C. is not included in Table 9 as it is an extreme 

outlier in VMT, GPM, and income, while Alaska and Hawaii are not included in the table due to 

lack of confidence in the VMT modeling. 

 

 Quantifying the similarity of these variables shows that the largest (anti-)correlation is 

between energy burden and income with a Pearson correlation coefficient of -0.67. In other 

words, as the average income in the state increases, the percentage of income spent on 

transportation fuel decreases (warmer color in Table 9). The second largest correlation is 

between energy burden and GPM, with a correlation coefficient of 0.60. This again indicates that 
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TABLE 9  Comparison of Energy Burden by State (continental U.S., purple = higher burden) 

State Average Burden Average VMT 

Fuel 

Consumption 

(gge/mi) 

Fuel Price 

($/gge) Median Income 

NY 2.24% 14,800 0.0467 $2.64 $72,500 

MD 2.46% 20,200 0.0468 $2.45 $87,400 

MA 2.49% 19,900 0.0465 $2.46 $85,300 

NJ 2.55% 20,800 0.0469 $2.52 $86,500 

VA 2.75% 20,500 0.0479 $2.27 $75,100 

CT 2.80% 22,800 0.0471 $2.54 $89,400 

CO 2.91% 18,600 0.0503 $2.38 $72,800 

RI 2.94% 18,900 0.0468 $2.47 $72,500 

NH 2.96% 21,800 0.0470 $2.39 $82,200 

FL 3.04% 16,900 0.0473 $2.40 $58,700 

TX 3.08% 19,500 0.0498 $2.14 $62,500 

MN 3.11% 20,400 0.0489 $2.36 $70,800 

UT 3.13% 19,000 0.0491 $2.47 $70,300 

PA 3.25% 17,700 0.0480 $2.67 $63,900 

IL 3.27% 18,800 0.0478 $2.68 $66,900 

DE 3.29% 21,200 0.0480 $2.39 $70,700 

OH 3.33% 18,000 0.0480 $2.39 $58,000 

SC 3.34% 17,900 0.0504 $2.19 $54,500 

LA 3.34% 18,700 0.0508 $2.14 $56,300 

MO 3.36% 18,500 0.0490 $2.20 $55,500 

NC 3.36% 18,400 0.0488 $2.28 $56,300 

WY 3.37% 18,600 0.0545 $2.41 $71,700 

GA 3.38% 19,000 0.0492 $2.29 $57,000 

WI 3.39% 19,400 0.0487 $2.36 $63,100 

NV 3.47% 15,900 0.0486 $2.93 $64,200 

NM 3.52% 16,800 0.0508 $2.36 $55,300 

AL 3.52% 18,300 0.0507 $2.20 $51,900 

TN 3.53% 19,000 0.0496 $2.24 $54,400 

VT 3.56% 20,600 0.0465 $2.58 $67,500 

KS 3.57% 20,500 0.0505 $2.21 $59,800 

WV 3.58% 16,300 0.0499 $2.41 $51,400 

ME 3.59% 18,800 0.0484 $2.44 $59,500 

MI 3.60% 18,500 0.0494 $2.44 $58,700 

WA 3.60% 18,500 0.0485 $3.07 $73,600 

AZ 3.64% 16,500 0.0494 $2.80 $60,500 

MT 3.64% 17,100 0.0538 $2.42 $59,500 

OR 3.68% 16,600 0.0486 $2.98 $62,400 

ID 3.69% 17,000 0.0517 $2.52 $57,400 

IN 3.72% 19,100 0.0500 $2.38 $58,000 

OK 3.73% 19,900 0.0506 $2.19 $56,600 

NE 3.74% 20,200 0.0505 $2.39 $63,900 

IA 3.76% 20,700 0.0505 $2.35 $64,200 

KY 3.77% 18,500 0.0498 $2.29 $52,200 

AR 3.79% 18,500 0.0518 $2.19 $51,300 

ND 3.81% 23,300 0.0523 $2.31 $73,900 

CA 3.86% 18,600 0.0467 $3.45 $75,300 

MS 3.91% 18,700 0.0517 $2.14 $49,200 

SD 3.95% 20,500 0.0523 $2.33 $63,000 

USA 3.27% 18,500 0.0484 $2.55 $64,300 
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vehicle fuel economy is a major factor for the household transportation energy burden. Improved 

fleetwide fuel efficiency can occur for a variety of reasons, including a newer vehicle fleet, 

increased numbers of smaller, more efficient conventional vehicles, and a higher market share of 

alternative fuel vehicles. This implies that increased adoption of more fuel-efficient vehicles, 

especially among low-income households, could have the biggest impact on reducing household 

transportation energy burden. The anticorrelation between GPM and income indicates that 

wealthier households have more fuel-efficient vehicles. The correlation between fuel price and 

energy burden is weak, perhaps implying that people reduce their driving when fuel costs are 

higher. This concept is known as the rebound effect, and has been explored deeply in the 

literature (57, 58). 

 

 In a given locality, it is important to know the fraction of households spending above a 

given affordability level. At the national level, when the affordable threshold is set to be 2%, 

then almost 60% of households across the U.S. fall below this affordability level. If the level is 

set to be 7%, the portion of the household that lack affordable transportation energy decreases to 

about 6%. For a range of different thresholds from 2% to 7%, we calculated the overburdened 

fraction of households nationwide; this is shown in the dashed line in Figure 18. Figure 18 also 

shows the overburdened fraction for four specific states: California, Illinois, New Jersey, and 

Oregon. At the state level, California has higher percentages of households in the overburdened 

categories than the national average for all affordability levels. As shown in Figure 15 above, 

despite having lower transportation energy burden in some metropolitan areas such as the San 

Francisco Bay Area, Los Angeles and San Diego, households in most other counties in 

California have a higher transportation energy burden than most of the counties in the rest of the 

country, largely due to high fuel costs. Oregon also exhibits a greater share of overburdened 

households than the national average, while Illinois has a lower share. New Jersey has lower 

percentages of overburdened households than the national average, for all affordability levels, 

due to high income and stock-weighted MPG. 

 

 Transportation energy burden varies by census tract within each state due to the variation 

in socioeconomic and demographic factors. The transportation energy burden by tract in Illinois 

ranges from 0.6% to 12.7%, shown in Figure 19. Households in rural areas and suburban areas 

tend to spend more on transportation energy than urban areas, mainly due to higher annual VMT. 

However, they also drive older and less fuel-efficient vehicles and do not have the same levels of 

market penetration of fuel-efficient vehicle technologies such as hybrids and PEVs. In the 

Chicago area, shown in Figure 20, the downtown and near-north side have a lower percentage of 

income spent on transportation energy, with more efficient vehicles and higher incomes. This 

contrasts with the south and west sides of the city, which have higher percentages of income 

spent on transportation energy. For these census tracts, income and fuel economy are both 

generally lower than the state average, while total driving distance is comparable to the nearby 

suburbs. 
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FIGURE 18  Percentage of households nationwide and in four states spending above a given 

affordability threshold on transportation fuel 

 

 

33% of households in the U.S. spent 

more than 3% of their household income 

on vehicle fuel costs  



 

33 

 

FIGURE 19  Key characteristics for transportation energy burden mapped by census tract in IL. 

Top left: Transportation energy burden; Top right: Median household income; Bottom left: stock-

weighted fuel economy; Bottom right: household annual VMT.  

 

Chicago 

 

 

St. Louis 
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FIGURE 20  Key characteristics for transportation energy burden mapped by census tract in 

Chicago area. Top left: Transportation energy burden; Top right: Median household income; 

Bottom left: stock-weighted fuel economy; Bottom right: household annual VMT. 
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5  SENSITIVITY ANALYSIS 

 

 

5.1  STOCK WEIGHTED MPG 

 

 Since fuel economy is one of the main causes identified for differences in transportation 

energy burden at the state level, we assess how real-world changes in fuel economy can improve 

affordability using historical data. Stock-weighted MPG from 2016 to 2018 vary from -4% to 

+8% by county, as shown in Figure 21. Higher numbers indicate more improvement in MPG, 

while negative numbers indicate a decrease in the MPG over that time period. Although most 

counties across the country show improvement, fuel economy of registered vehicles in Montana 

and Alaska decreased in 2018 compared to 2016. Counties in the San Francisco Bay Area and 

the Pacific Northwest show the most improvement in stock-weighted MPG, largely due to 

rapidly increasing PEV adoption. Nationally, the average stock-weighted MPG increased by 

about 3% from 2016 to 2018. Keeping the gasoline price and household VMT unchanged, the 

resulting overall reduction in transportation energy burden due to the 3% improvement in stock-

weighted MPG is about $8.2 billion. A retrospective analysis conducted by Greene and Welch 

also indicates the saving on fuel due to the increased light-duty vehicle fuel economy minus 

dollars spent to buy more fuel-efficient vehicles is substantial for every income quintile in the 

U.S. (59). 

 

 

 

FIGURE 21  Stock-weighted MPG difference: 2018 vs. 2016 
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5.2  PARAMETRIC SENSITIVITY ANALYSIS 

 

 National average household transportation burden is about 3.3%, which is based on the 

national average household annual VMT of 18,515. We assessed the sensitivity of our results by 

varying the three key input variables at each tract by one standard deviation nationwide for each 

variable. These calculations were done at the tract-level, and then aggregated to find a national 

average. As shown in Figure 22, the energy burden results are presented using parametric 

sensitivity analysis highlighting the influence of three input variables: 1) household annual 

VMT, 2) stock-weighted MPG, and 3) gasoline price. In order to illustrate the sensitivities in a 

cross-comparable way, we vary each by one standard deviation from the national average. When 

household VMT for each tract is adjusted by one standard deviation from the national average at 

each tract (±7,402 miles/year), the resulting energy burden at the national level varies from 1.8% 

to 4.7%. The energy burden results are most sensitive to the stock-weighted fuel economy 

change of ±1.24 mpg at each tract; and the resulting energy burden varies from 3.1% to 3.5% 

nationally. The energy burden results are least sensitive to the existing variability in fuel price, 

varying from 2.8% to 3.8% when the price varies by ±$0.39/GGE. 

 

 

 

FIGURE 22  Parametric sensitivity analysis of transportation 

energy burden 
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6  CONCLUSIONS 

 

 

 This study quantified transportation energy affordability as a function of household 

characteristics and geography using standardized and localized transportation energy data at the 

census tract levels for the entire United States. Affordability in this study is quantified as the 

transportation energy burden, the percentage of annual household income spent on household 

vehicle fuel. This highly resolved data reveals the greater variation than national averages and 

provides data to support local decision making to reduce the transportation energy burden.  

 

 Household annual transportation energy cost depends on the vehicle miles traveled 

(VMT), fuel price, and vehicle fuel efficiency. Variability in household annual VMT, on-road 

vehicle efficiency and resulting burden is demonstrated geographically, socioeconomically and 

by urban form. Household annual VMT varies by housing unit density and income. Suburban 

and rural households have higher annual VMT than urban households across all regions, and 

VMT generally increases as the average income increases. Higher-income groups have a wider 

distribution of annual VMT, possibly due to the diversity of the number of vehicles owned by 

those groups. 

 

 The finer resolution data has identified how the different factors influence overall 

affordability in different areas or groups. National average household transportation energy 

burden has a mean value of 3.3%. With the increased geographical and socioeconomic resolution 

developed in this study, we found that the burden by census tract varies between 0.09% and 

23.3%. Rural households have higher transportation energy burden than suburban and urban 

households for all regions. Despite increasing household VMT for higher household income 

groups, transportation energy burden improves as the household income increases. Suburban and 

rural households spend more on transportation energy compared to urban households due to the 

usage of less fuel-efficient vehicle technologies and higher annual VMT. Lower-income 

neighborhoods have a relatively higher transportation energy burden, with census tracts with 

annual income under $20,000 averaging 6.5% burden. Lower-income groups have a wide 

distribution of transportation energy burden, with the most burdened quarter of tracts in the 

lowest income group above 6.3%, but another quarter below 3.6%. The highest income group, 

$125,000/yr and above, has a narrow distribution with half of the tracts falling between 1.8% and 

2.6%. By setting a threshold level on affordability, we can assess the portion of households that 

spent more than that level. For example, nearly 60% of households nationwide spend more than 

2% of their income on transportation fuel. If the affordability level is set at 7%, the portion of 

households considered as overburdened decreases to only 6%. This higher resolution data can 

help support targeted efforts to reduce the transportation energy burden for areas that experience 

the highest energy burdens. 

 

 This analysis shows that the variation in transportation energy burden at the state level 

can be largely explained by the on-road vehicle fuel efficiency. The adoption of more fuel-

efficient vehicles, especially among low-income households, could have the biggest impact on 

improving household transportation energy burden. Currently, wealthier census tracts have better 

fuel economy on average. Our analysis shows that, nationally, a 3% improvement in stock-
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weighted MPG from 2016 to 2018 saved American households $8.2 billion in transportation 

energy costs.  

 

 This study provides a finer understanding of the spatial variation in household 

transportation energy burden by connecting VMT, vehicle fuel economy, fuel costs, and income 

data at the census tract level. The baseline data and framework developed here can be used to 

understand additional components of transportation energy costs and assess spatially distributed 

impacts of transportation policies, adoptions of different vehicle technologies and fuel prices on 

household transportation affordability. Current work assumes that the mpg is uniform across a 

census tract. However, wealthier households purchase newer and more fuel efficient vehicles. 

Future research to expand this work could include identifying the households and communities 

that have potential to adopt more fuel-efficient vehicles or transportation modes, based on their 

social-economic and other environmental factors, and quantifying the resulting affordability. 
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