Life Cycle Energy and Greenhouse Gas (GHG) Emission Effects of Biodiesel in the United States with Induced Land Use Change Impacts
1/10/2018
Researchers conducted updated simulations to depict a life cycle analysis (LCA) of biodiesel production from soybeans and other feedstocks in the United States. The study addressed in detail the interaction between LCA and induced land use change (ILUC) for biodiesel. Relative to conventional petroleum diesel, soy biodiesel could achieve 76% reduction in GHG emissions without considering ILUC, or 66%-72% reduction in overall GHG emissions when various ILUC cases were considered. Soy biodiesel's fossil fuel consumption rate was also 80% lower than its petroleum counterpart. Furthermore, this study examined the cause and the implication of each key parameter affecting biodiesel LCA results using a sensitivity analysis, which identified the hot spots for fossil fuel consumption and GHG emissions of biodiesel so that future efforts can be made accordingly. Finally, researchers also investigated biodiesel produced from other feedstocks (canola oil and tallow) to contrast with soy biodiesel and petroleum diesel.
Authors: Chen, R.; Qin, Z.; Han, J.; Wang, M.; Taheripour, F.; Tyner, W.; O'Connor, D.; Duffield, J.
Notes: This Bioresource Technology article (Vol. 251 (2018): pp. 249-258) is copyrighted by Elsevier B.V. and only available by accessing it through Science Direct.