Loading...
Model Year 2017: Alternative Fuel and Advanced Technology Vehicles
4/18/2017
The fact sheet details the model, vehicle type, emission class, transmission type/speeds, engine size, and fuel economy of a variety of flexible fuel vehicles, hybrid electric vehicles, all-electric, and extended range electric vehicles, as well as CNG and propane vehicles.
EVgo Fleet and Tariff Analysis; Phase I: California
4/4/2017
Public direct current (DC) fast chargers are anticipated to play an important role in accelerating plug-in electric vehicle (PEV) adoption and mitigating emissions. This project analyzed charging session data in 2016 from all 230 EVgo DCFC stations in California to determine the key factors that contribute to the electricity costs and alternatives that may be available to reduce those costs, and to provide guidance for future rate design discussions.
Authors: Fitzgerald, G.; Nelder, C.
Clean Cities Alternative Fuel Price Report, January 2017
2/27/2017
The Clean Cities Alternative Fuel Price Report for January 2017 is a quarterly report on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue describes prices that were gathered from Clean Cities coordinators and stakeholders between January 1, 2017 and January 15, 2017, and then averaged in order to determine regional price trends by fuel and variability in fuel price within regions and among regions. The prices collected for this report represent retail, at-the-pump sales prices for each fuel, including Federal and state motor fuel taxes.
Table 2 reports that the nationwide average price (all amounts are per gallon) for regular gasoline has increased 10 cents from $2.22 to $2.32; diesel increased 10 cents from $2.48 to $2.58; CNG price increased 5 cents from $2.06 to $2.11; ethanol (E85) increased 11 cents from $1.93 to $2.04; propane increased 12 cents from $2.68 to $2.80; and biodiesel (B20) has increased 11 cents from $2.46 to 2.57.
According to Table 3, CNG is $.21 less than gasoline on an energy-equivalent basis, while E85 is $0.33 more than gasoline on an energy-equivalent basis.
Authors: Bourbon, E.
Preliminary Assessment of Spatial Competition in the Market for E85: Presentation Supplement
2/10/2017
Anecdotal evidence suggests retail E85 prices may track retail gasoline prices rather than wholesale costs. This indicates E85 prices may be higher than they would be if priced on a cost basis hence limiting adoption by some price-sensitive consumers. Using publicly available and proprietary E85 and regular gasoline price data, we examine pricing behavior in the market for E85. Specifically, we assess the extent to which local retail competition in E85 markets decreases E85 retail prices. Results of econometric analysis suggest that higher levels of retail competition (measured in terms of station density) are associated with lower E85 prices at the pump. While more precise causal estimates may be produced from more comprehensive data, this study is the first to our knowledge that estimates the spatial competition dimension of E85 pricing behavior by firms. This technical report elaborates on a related presentation.
Authors: Clinton, B.; Johnson, C.; Moriarty, K.; Newes, E.; Vimmerstedt, L.
2016 Survey of Non-Starch Alcohol and Renewable Hydrocarbon Biofuels Producers
2/8/2017
In order to understand the anticipated status of the industry for non-starch ethanol and renewable hydrocarbon biofuels as of the end of calendar year 2015, the National Renewable Energy Laboratory (NREL) updated its annual survey of U.S. non-starch ethanol and renewable hydrocarbon biofuels producers. This report presents the results of this survey update, describes the survey methodology, and documents important changes since the 2015 survey published at the end of 2015
Authors: Warner, E.; Schwab, A.; Bacovsky, D.
Transforming the Nation’s Electricity System: the Second Installment of the Quadrennial Energy Review
1/6/2017
On January 6, 2017, the Quadrennial Energy Review (QER) Task Force released the second installment of the Quadrennial Energy Review report titled “Transforming the Nation’s Electricity System.” The second installment (QER 1.2) finds the electricity system is a critical and essential national asset, and it is a strategic imperative to protect and enhance the value of the system through modernization and transformation. QER 1.2 analyzes trends and issues confronting the Nation’s electricity sector out to 2040, examining the entire electricity system from generation to end use, and within the context of three overarching national goals: (1) enhance economic competitiveness; (2) promote environmental responsibility; and (3) provide for the Nation’s security.
The report, which provides 76 recommendations that enable sector modernization and transformation, provides the building blocks for longer-term, planned changes and activities undertaken in conjunction with state and local governments, policymakers, industry, and other stakeholders.
Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts
1/6/2017
Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networks to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.
Authors: Wood, E.; Raghavan, S.; Rames, C.; Eichman, J.; Melaina, M.
Clean Cities 2015 Annual Metrics Report
12/28/2016
The U.S. Department of Energy's (DOE's) Clean Cities program advances the nation's economic, environmental, and energy security by supporting local actions to cut petroleum use and greenhouse gas (GHG) emissions in transportation. A national network of nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, brings together stakeholders in the public and private sectors to deploy alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. Each year, DOE asks Clean Cities coordinators to submit annual reports of their activities and accomplishments for the previous calendar year. Progress reports and information are submitted online as a function of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators report a range of information that characterizes the membership, funding, projects, and activities of their coalitions. They also document activities in their region related to the development of refueling/charging infrastructure, sales of alternative fuels; deployment of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), hybrid electric vehicles (HEVs), and plug-in hybrid electric vehicles (PHEVs); idle reduction initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the data and translates them into petroleum-use and GHG emission reduction impacts, which are summarized in this report.
Authors: Johnson, C.; Singer, M.
Field Evaluation of Medium-Duty Plug-in Electric Delivery Trucks
12/16/2016
This report focuses on medium-duty electric delivery vehicles operated by Frito-Lay North America (FLNA) at its Federal Way, Washington, distribution center. The 100% electric drive system is an alternative to conventional diesel delivery trucks and reduces both energy consumption and carbon dioxide (CO2) emissions. The vehicles' drive cycles and operation are analyzed and compared to demonstrate the importance of matching specific electric vehicle (EV) technologies to the appropriate operational duty cycle. The results of this analysis show that the Smith Newton EVs demonstrated a 68% reduction in energy consumption over the data reporting period compared to the conventional diesel vehicles, as well as a 46.4% reduction in CO2 equivalent emissions based on the local energy generation source. In addition to characterizing the in-use performance of the EVs compared to the conventional diesels, detailed facility load data were collected at the main building power feed as well as from each of the 10 EV chargers to better understand the broader implications associated with commercial EV deployment. These facility loads were incorporated into several modeling scenarios to demonstrate the potential benefits of integrating onsite renewables.
Authors: Prohaska, R.; Simpson, M.; Ragatz, A.; Kelly, K.; Smith, K.; Walkowicz, K.
Workplace Charging Challenge - Progress Update 2016: A New Sustainable Commute
12/12/2016
In June 2016, the Workplace Charging Challenge distributed its third annual survey to 295 partners with the goal of tracking partners' progress and identifying trends in workplace charging. This document summarizes findings from the survey and highlights accomplishments of the EV Everywhere Workplace Charging Challenge.
Clean Cities Alternative Fuel Price Report, October 2016
12/1/2016
The Clean Cities Alternative Fuel Price Report for October 2016 is a quarterly report on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue describes prices that were gathered from Clean Cities coordinators and stakeholders between October 1, 2016 and October 15, 2016, and then averaged in order to determine regional price trends by fuel and variability in fuel price within regions and among regions. The prices collected for this report represent retail, at-the-pump sales prices for each fuel, including Federal and state motor fuel taxes.
Table 2 reports that the nationwide average price (all amounts are per gallon) for regular gasoline has decreased 4 cents from $2.26 to $2.22; diesel increased 2 cents from $2.46 to $2.48; CNG price increased 1 cent from $2.05 to $2.06; ethanol (E85) decreased 6 cents from $1.99 to $1.93; propane decreased 8 cents from $2.76 to $2.68; and biodiesel (B20) has decreased 8 cents from $2.54 to 2.46.
According to Table 3, CNG is $.16 less than gasoline on an energy-equivalent basis, while E85 is $0.29 more than gasoline on an energy-equivalent basis.
Authors: Bourbon, E.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2016
12/1/2016
This report, published annually, summarizes the progress of fuel cell electric bus development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. Funding for this effort is provided by the U.S. Department of Energy's Fuel Cell Technologies Office within the Office of Energy Efficiency and Renewable Energy and by the U.S. Department of Transportation's Federal Transit Administration. The 2016 summary results primarily focus on the most recent year for each demonstration, from August 2015 through July 2016. The results for these buses account for more than 550,000 miles traveled and 59,500 hours of fuel cell power system operation. The primary results presented in the report are from three demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus Project at SunLine Transit Agency in California; and American Fuel Cell Bus Project at the University of California at Irvine.
Authors: Eudy, L.; Post, M.; Jeffers, M.
Low-Carbon Natural Gas for Transportation: Well-to-Wheels Emissions and Potential Market Assessment in California
12/1/2016
This report improves on the understanding of the long-term technology potential of low-carbon natural gas (LCNG) supply pathways by exploring transportation market adoption potential through 2035 in California. Techno-economic assessments of each pathway are developed to compare the capacity, cost, and greenhouse gas (GHG) emissions of select LCNG production pathways. The study analyzes the use of fuel from these pathways in light-, medium-, and heavy-duty vehicle applications. Economic and life-cycle GHG emissions analysis suggest that landfill gas resources are an attractive and relatively abundant resource in terms of cost and GHG reduction potential, followed by waste water treatment plants and biomass with gasification and methanation. Total LCNG production potential is on the order of total natural gas demand anticipated in a success scenario for future natural gas vehicle adoption by 2035 across light-, medium-, and heavy-duty vehicle markets (110 trillion Btu/year).
Authors: Penev, M.; Melaina, M.; Bush, B.; Muratori, M.; Warner, E.; Chen, Y.
Estimated Bounds and Important Factors for Fuel Use and Consumer Costs of Connected and Automated Vehicles
11/1/2016
This report details a study of the potential effects of connected and automated vehicle (CAV) technologies on vehicle miles traveled (VMT), vehicle fuel efficiency, and consumer costs. Related analyses focused on a range of light-duty CAV technologies in conventional powertrain vehicles -- from partial automation to full automation, with and without ridesharing -- compared to today's base-case scenario. Analysis results revealed widely disparate upper- and lower-bound estimates for fuel use and VMT, ranging from a tripling of fuel use to decreasing light-duty fuel use to below 40% of today's level. This wide range reflects uncertainties in the ways that CAV technologies can influence vehicle efficiency and use through changes in vehicle designs, driving habits, and travel behavior. The report further identifies the most significant potential impacting factors, the largest areas of uncertainty, and where further research is particularly needed.
Authors: Stephens, T.S.; Gonder, J.; Chen, Y.; Lin, Z.; Liu, C.; Gohlke, D.