Loading...
Protecting Public Health: Plug-In Electric Vehicle Charging and the Healthcare Industry
10/10/2016
In 2014, the U.S. transportation sector consumed more than 13 million barrels of petroleum a day, approximately 70% of all domestic petroleum consumption. Internal combustion engine vehicles are major sources of greenhouse gases (GHGs), smog-forming compounds, particulate matter, and other air pollutants. Widespread use of alternative fuels and advanced vehicles, including plug-in electric vehicles (PEVs), can reduce our national dependence on petroleum and decrease the emissions that impact our air quality and public health. Healthcare organizations are major employers and community leaders that are committed to public wellbeing and are often early adopters of employer best practices. A growing number of hospitals are offering PEV charging stations for employees to help promote driving electric vehicles, reduce their carbon footprint, and improve local air quality.
Authors: Lommele, S.; Ryder, C.
American Recovery and Reinvestment Act: Clean Cities Project Awards
10/3/2016
Each Clean Cities project award under the American Recovery and Reinvestment Act included a diverse group of stakeholders who worked together to lay the foundation for their communities to adopt alternative fuels and petroleum reduction strategies. This document provides a snapshot of the impact of each project and highlights the partners and Clean Cities coalitions who helped transform local and regional transportation markets through 25 projects impacting 45 states.
Authors: Kelly, K.
Clean Cities Alternative Fuel Price Report, July 2016
9/19/2016
The Clean Cities Alternative Fuel Price Report for July 2016 is a quarterly report on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue describes prices that were gathered from Clean Cities coordinators and stakeholders between July 1, 2016 and July 15, 2016, and then averaged in order to determine regional price trends by fuel and variability in fuel price within regions and among regions. The prices collected for this report represent retail, at-the-pump sales prices for each fuel, including Federal and state motor fuel taxes.
Table 2 reports that the nationwide average price (all amounts are per gallon) for regular gasoline has increased 20 cents from $2.06 to $2.26; diesel increased 33 cents from $2.13 to $2.46; CNG price increased 3 cents from $2.02 to $2.05; ethanol (E85) increased 15 cents from $1.84 to $1.99; propane decreased 1 cent from $2.77 to $2.76; and biodiesel (B20) has increased 31 cents from $2.23 to 2.54.
According to Table 3, CNG is $.21 less than gasoline on an energy-equivalent basis, while E85 is $0.33 more than gasoline on an energy-equivalent basis.
Authors: Bourbon, E.
Fleets Run Cleaner on Natural Gas; Emissions and Environmental Benefits of Natural Gas Vehicle
9/16/2016
Lower greenhouse gas and environmental related emissions are priorities for shippers, trucking fleets, municipal refuse vehicles and transit buses across the country. Natural gas provides clear advantages among alternative transportation fuels. This fact sheet explains the emission and environmental benefits associated with CNG and LNG, as well as the technical reasons behind the calculations and inputs that were chosen.
Case Study: Natural Gas Regional Transport Trucks
8/1/2016
Learn about Ryder System, Inc.'s experience in deploying nearly 200 CNG and LNG heavy-duty trucks and construction and operation of L/CNG stations using ARRA funds. Using natural gas in its fleet, Ryder mitigated the effects of volatile fuel pricing and reduced lifecycle GHGs by 20% and petroleum by 99%.
Authors: Laughlin, M.; Burnham, A.
Utilities Power Change: Engaging Commercial Customers in Workplace Charging
6/29/2016
As stewards of an electric grid that is available almost anywhere people park, utilities that support workplace charging are uniquely positioned to help their commercial customers be a part of the rapidly expanding network of charging infrastructure. Utilities understand the distinctive challenges of their customers, have access to technical information about electrical infrastructure, and have deep experience modeling and managing demand for electricity. This case study highlights the experiences of two utilities with workplace charging programs.
Authors: Lommele, S.; Dafoe, W.
Clean Cities Alternative Fuel Price Report, April 2016
6/8/2016
The Clean Cities Alternative Fuel Price Report for April 2016 is a quarterly report on the prices of alternative fuels in the U.S. and their relation to gasoline and diesel prices. This issue describes prices that were gathered from Clean Cities coordinators and stakeholders between April 1, 2016 and April 15, 2016, and then averaged in order to determine regional price trends by fuel and variability in fuel price within regions and among regions. The prices collected for this report represent retail, at-the-pump sales prices for each fuel, including Federal and state motor fuel taxes.
Table 2 reports that the nationwide average price (all amounts are per gallon) for regular gasoline has increased 8 cents from $1.98 to $2.06; diesel decreased 10 cents from $2.23 to $2.13; CNG price decreased 7 cents from $2.09 to $2.02; ethanol (E85) decreased 2 cents from $1.86 to $1.84; propane decreased 8 cents from $2.85 to $2.77; and biodiesel (B20) has decreased 18 cents from $2.41 to 2.23.
According to Table 3, CNG is $.04 less than gasoline on an energy-equivalent basis, while E85 is $0.33 more than gasoline on an energy-equivalent basis.
Authors: Bourbon, E.
Emissions Associated with Electric Vehicle Charging: Impact of Electricity Generation Mix, Charging Infrastructure Availability, and Vehicle Type
4/11/2016
With the aim of reducing greenhouse gas emissions associated with the transportation sector, policy-makers are supporting a multitude of measures to increase electric vehicle adoption. The actual level of emission reduction associated with the electrification of the transport sector is dependent on the contexts that determine when and where drivers charge electric vehicles. This analysis contributes to our understanding of the degree to which a particular electricity grid profile, vehicle type, and charging patterns impact CO2 emissions from light-duty, plug-in electric vehicles. We present an analysis of emissions resulting from both battery electric and plug-in hybrid electric vehicles for four charging scenarios and five electricity grid profiles. A scenario that allows drivers to charge electric vehicles at the workplace yields the lowest level of emissions for the majority of electricity grid profiles. However, vehicle emissions are shown to be highly dependent on the percentage of fossil fuels in the grid mix, with different vehicle types and charging scenarios resulting in fewer emissions when the carbon intensity of the grid is above a defined level. Restricting charging to off-peak hours results in higher total emissions for all vehicle types, as compared to other charging scenarios.
Authors: McLaren, J.; Miller, J.; O'Shaughnessy, E.; Wood, E.; Shapiro, E.
Case Study - Propane Bakery Delivery Step Vans
4/1/2016
A switch to propane from diesel by a major Midwest bakery fleet showed promising results, including a significant displacement of petroleum, a drop in greenhouse gases and a fuel cost savings of seven cents per mile, according to a study recently completed by the U.S. Department of Energy's Argonne National Laboratory for the Clean Cities program.
Authors: Laughlin, M.; Burnham, A.
Assessment of Vehicle Sizing, Energy Consumption and Cost through Large Scale Simulation of Advanced Vehicle Technologies
3/28/2016
The U. S. Department of Energy (DOE) Vehicle Technologies Office (VTO) supports new technologies to increase energy security in the transportation sector at a critical time for global petroleum supply, demand, and pricing. VTO works in collaboration with industry and research organizations to identify the priority areas of research needed to develop advanced vehicle technologies to reduce and eventually eliminate petroleum use, and reduce emissions of greenhouse gases, primarily carbon dioxide from carbon-based fuels. The objective of the present study was to evaluate the benefits of the DOE-VTO for a wide range of vehicle applications, powertrain configurations and component technologies for different timeframes and quantify the potential future petroleum displacement up to 2045, as well as the cost evolution. While it is not possible to simulate all the different combinations, more than 2000 vehicles were simulated in the study.
Authors: Moawad, A.; Kim, N.; Shidore, N.; Rousseau, A.
Drive Electric Vermont Case Study
3/21/2016
The U.S. Department of Energy's EV Everywhere Grand Challenge is working to identify barriers and opportunities to plugin electric vehicle (PEV) adoption. The Department of Energy developed a case study with Drive Electric Vermont to identify the lessons learned and best practices for successful PEV and charging infrastructure deployment in small and midsize communities. This is a snapshot of the findings.
Authors: Wagner, F.; Roberts, D.; Francfort, J.; White, S.