Loading...
U.S. Virgin Islands Transportation Petroleum Reduction Plan
9/1/2011
The U.S. Virgin Islands (USVI) has set a goal to reduce petroleum use 60% by 2025 compared to the business-as-usual scenario. Ground-based transportation is responsible for 40% of USVI petroleum use, so the USVI and the U.S. Department of Energy (DOE) set up a Transportation working group (TWG) to devise a way to meet the 60% reduction goal in the transportation sector. This report lays out the TWG's plan.
Authors: Johnson, C.
Vehicle Technologies Program: Goals, Strategies, and Top Accomplishments
12/1/2010
The U.S. Department of Energy's (DOE) Vehicle Technologies Program (VTP) is meeting this American dependence on oil with an integrated portfolio of advanced vehicle and fuel research, development, demonstration, and deployment activities. VTP accomplishes this work in collaboration with industryleaders, national laboratories, universities, state and local governments, and other stakeholders--harnessing a vast resource of expertise to help technologies developed in the laboratory make the transition to commercially successful products.
Electric Vehicle Infrastructure: A Guide for Local Governments in Washington State
7/1/2010
In 2009 the Washington State Legislature enacted a new law designed to encourage electric vehicles. To create a consistent regulatory framework that would help this industry grow across Washington State, the legislature required the Puget Sound Regional Council and Department of Commerce to develop guidance for local governments. To meet this requirement, a broad-based technical advisory committee made up of local governments, charging equipment vendors, utilities, ports, state agencies, and consumer interests was formed. The state's new electric vehicle law requires that all local governments in Washington State allow electric vehicle charging stations in most of their zoning categories. Allowing charging stations creates the need to address a number of issues beyond zoning. These include on-street and off-street signage, charging station design standards, parking enforcement, accessibility for all users, SEPA exemptions, and more. These issues are addressed in this document.
Authors: Technical Advisory Committee
NREL's PHEV/EV Li-ion Battery Secondary-Use Project
6/1/2010
Accelerated development and market penetration of plug-in hybrid electric vehicles (PHEVs) and electric vehicles (EVs) is restricted at present by the high cost of lithium-ion (Li-ion) batteries. One way to address this problem is to recover a fraction of the battery's cost via reuse in other applications after it is retired from service in the vehicle, when the battery may still have sufficient performance to meet the requirements of other energy storage applications.
Authors: Neubauer, J.; Pesaran, A.
Technology Improvement Pathways to Cost-Effective Vehicle Electrification
2/1/2010
This paper evaluates several approaches aimed at making plug-in electric vehicles (EV) and plug-in hybrid electric vehicles (PHEVs) cost-effective including opportunity charging, replacing the battery over the vehicle life, improving battery life, reducing battery cost, and providing electric power directly to the vehicle during a portion of its travel. Many combinations of PHEV electric range and battery power are included. For each case, the model accounts for battery cycle life and the national distribution of driving distances to size the battery optimally. Using the current estimates of battery life and cost, only the dynamically plugged-in pathway was cost-effective to the consumer. Significant improvements in battery life and battery cost also made PHEVs more cost-effective than today's hybrid electric vehicles (HEVs) and conventional internal combustion engine vehicles (CVs).
Authors: Brooker, A.; Thornton, M.; Rugh, J.
Battery-Powered Electric and Hybrid Electric Vehicle Projects to Reduce Greenhouse Gas Emissions: A Resource Guide for Project Development
7/1/2002
This report provides national and international project developers with a guide on how to estimate and document the GHG emission reduction benefits and/or penalties for battery-powered and hybrid-electric vehicle projects. This primer also provides a resource for the creation of GHG emission reduction projects for the Activities Implemented Jointly (AIJ) Pilot Phase and in anticipation of other market based project mechanisms proposed under the United Nations Framework Convention of Climate Change (UNFCC). Though it will be necessary for project developers and other entities to evaluate the emission benefits of each project on a case-by-case basis, this primer will provide a guide for determining which data and information to include during the process of developing the project proposal.