Loading...
Clean Cities Coalitions 2017 Activity Report
5/14/2019
The U.S. Department of Energy's (DOE's) national network of Clean Cities Coalitions advance the nation's economic, environmental, and energy security by supporting local actions to promote the use of domestic fuels within transportation. The nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, bring together stakeholders in the public and private sectors to use alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. To ensure success, coalitions leverage a robust set of expert resources and tools provided by national laboratories and DOE. Each year, Clean Cities coordinators submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online tool that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels; use of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), and hybrid electric vehicles (HEVs); IR initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the submitted data to determine how broadly energy use in the U.S. has shifted due to coalition activities, which are summarized in this report.
Authors: Johnson, C.; Singer, M.
Fuel Cell Electric Vehicle Driving and Fueling Behavior
3/6/2019
The objectives of this project are to validate hydrogen fuel cell electric vehicles in real-world settings and to identify the current status and evolution of the technology. The analysis objectively assesses progress toward targets and market needs defined by the U.S. Department of Energy and stakeholders, provides feedback to hydrogen research and development, and publishes results for key stakeholder use and investment decisions. Fiscal year 2018 objectives focused on analysis and reporting of fuel cell electric vehicle driving range, fuel economy, drive and fill behaviors, durability, fill performance, and fuel cell performance. This report specifically addresses the topics of driving range, fuel economy, drive and fill behaviors, and fill performance.
Authors: Kurtz, J.; Sprik, S.; Saur, G.; Onorato, S.
Technology Maintenance Readiness Guide for Zero-Emission Buses
1/10/2019
Transit agencies all over the United States are deploying zero-emission buses (ZEBs), including battery electric buses and fuel cell electric buses. Air quality is the primary driver for adopting ZEBs, especially in states where legislation has been passed to regulate vehicle emissions. The U.S. Department of Energy, through its National Renewable Energy Laboratory (NREL), tracks the progress of these advanced technologies as they are being developed and demonstrated. NREL works with transit agencies and their manufacturing partners to conduct independent third-party evaluations to validate performance under real-world service and report on the status of the technologies toward entering the market. The results are intended to help transit agencies understand the technology status and make informed purchase decisions.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2018
12/31/2018
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. The data from these early FCEB deployments funded by the U.S. Department of Transportation, state agencies, and the private sector help to guide future early-stage research and development. The 2018 summary results primarily focus on the most recent year from August 2017 through July 2018.
Authors: Eudy, L.; Post, M.
Clean Cities Coalitions 2016 Activity Report
10/10/2018
The U.S. Department of Energy's (DOE's) national network of Clean Cities Coalitions advance the nation's economic, environmental, and energy security by supporting local actions to promote the use of domestic fuels within transportation. The nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, bring together stakeholders in the public and private sectors to use alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. To ensure success, coalitions leverage a robust set of expert resources and tools provided by national laboratories and DOE. Each year, Clean Cities coordinators submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online tool that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels; use of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), and hybrid electric vehicles (HEVs); IR initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the submitted data to determine how broadly energy use in the U.S. has shifted due to coalition activities, which are summarized in this report.
Authors: Johnson, C.; Singer, M.
Transitioning to zero-emission heavy-duty freight vehicles
9/26/2018
This report compares the evolution of heavy-duty diesel, diesel hybrid, natural gas, fuel cell, and battery electric technologies in the 2025-2030 timeframe. It synthesizes data from the research literature, demonstrations, and low-volume commercial trucks regarding their potential to deliver freight with zero tailpipe emissions. Additionally, it analyzes the emerging technologies by their cost of ownership and life-cycle greenhouse gas emissions for the three vehicle markets of China, Europe, and the United States.
Authors: Moultak, M.; Lutsey, N.; Hall, D.
Notes:
This copyrighted publication can be accessed on The International Council on Clean Transportation's website.
The Zero Emission Vehicle Regulation
8/24/2018
This fact sheet provides an overview of California’s zero-emission vehicle (ZEV) regulation, which is designed to achieve the state’s long-term emission reduction goals by requiring manufacturers to offer for sale specific numbers of the very cleanest cars available. The ZEV regulation has been adopted by other states.
Economy and Emissions Impacts from Solazyme Fuel in UPS Delivery Vehicles
8/10/2018
To improve understanding of the potential fuel economy and emissions impacts from switching a fleet of vehicles from conventional petroleum diesel to synthetic renewable diesel, the National Renewable Energy Laboratory (NREL) conducted fuel economy and emissions analyses at NREL's Renewable Fuels and Lubricants (ReFUEL) Laboratory. Representative test cycles were developed based on real-world data from six package delivery vehicles and six class 8 day-cab tractors operated by UPS in the Dallas, Texas, area. A three-week in-field data collection period yielded 170 days of real-world vehicle operations data that NREL used to select representative standard drive cycles for testing. Fuel economy and emissions tests at the ReFUEL Laboratory showed that, in general, when switching from conventional diesel to renewable diesel observed changes in tailpipe carbon dioxide (CO2), fuel consumption, and fuel economy are primarily driven by changes in fuel properties such as the hydrogen-to-carbon ratio, density, and lower heating value (LHV). The vehicles tested with the renewable diesel showed a consistent 4.2% reduction in tailpipe CO2 emissions, but a 3.5%-4.8% reduction in fuel economy compared with local pump diesel. This is consistent with the 4.2% lower volumetric LHV of the sourced renewable diesel compared to the pump diesel. The UPS package car tested on renewable diesel also demonstrated a 4.1% oxides of nitrogen (NOx) reduction. NOx emissions from the UPS selective-catalyst-reduction-equipped tractor were an order of magnitude lower than the package car but showed relatively higher variability in results from cycle to cycle.
Authors: Kelly, K.; Ragatz, A.
Model Year 2018: Alternative Fuel and Advanced Technology Vehicles
8/7/2018
The fact sheet details the model, vehicle type, emission class, transmission type/speeds, engine size, and fuel economy of a variety of flexible fuel vehicles, hybrid electric vehicles, all-electric, and extended range electric vehicles, as well as CNG and propane vehicles.
State of the States: Fuel Cells in America 2017, 8th Edition
5/23/2018
This January 2018 report, the eighth in a series, provides a comprehensive analysis of state activities supporting fuel cell and hydrogen technology, including profiles of all 50 states with a catalog of recent installations, policies, funding, and deployments around the country.
Authors: Curtin, S.; Gangi, J.
Fuel Cell Buses in U.S. Transit Fleets: Current Status 2017
11/21/2017
This report, published annually, summarizes the progress of fuel cell electric bus (FCEB) development in the United States and discusses the achievements and challenges of introducing fuel cell propulsion in transit. The report provides a summary of results from evaluations performed by the National Renewable Energy Laboratory. This annual status report combines results from all FCEB demonstrations, tracks the progress of the FCEB industry toward meeting technical targets, documents the lessons learned, and discusses the path forward for commercial viability of fuel cell technology for transit buses. These data and analyses help provide needed information to guide future early-stage research and development. The 2017 summary results primarily focus on the most recent year for each demonstration, from August 2016 through July 2017. The primary results presented in the report are from five demonstrations of two different fuel-cell-dominant bus designs: Zero Emission Bay Area Demonstration Group led by Alameda-Contra Costa Transit District (AC Transit) in California; American Fuel Cell Bus (AFCB) Project at SunLine Transit Agency in California; AFCB Project at the University of California at Irvine; AFCB Project at Orange County Transportation Authority; and AFCB Project at Massachusetts Bay Transportation Authority.
Authors: Eudy, L.; Post, M.
Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results: Sixth Report
9/1/2017
This report presents results of a demonstration of fuel cell electric buses (FCEB) operating in Oakland, California. Alameda-Contra Costa Transit District (AC Transit) leads the Zero Emission Bay Area (ZEBA) demonstration, which includes 13 advanced-design fuel cell buses and two hydrogen fueling stations. The ZEBA partners are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. NREL has published five previous reports describing operation of these buses. This report presents new and updated results covering data from January 2016 through December 2016.
Authors: Eudy, L.; Post, M.; Jeffers, M.
Sustainable Transportation Program 2016 Annual Report
8/24/2017
The efficiency and security of the transportation system affect us all - from the time and energy spent on our daily commutes to the availability of goods in our local stores. Also impacted are our pocketbooks, both as individuals and as a nation.
Transportation accounts for about 70% of national petroleum use, with Americans spending more than $177 billion to import oil in 2015. That same year, oil dependence cost the US $29 billion in lost potential GDP. Creating transportation technologies that reduce dependence on foreign oil; boost America's economy; improve national energy security; and deliver to consumers affordable, environmentally friendly choices is of critical importance.
ORNL's Sustainable Transportation Program (STP) works with government and industry to develop scientific knowledge and new technologies that accelerate the deployment of energy-efficient vehicles and intelligent, secure, and accessible transportation systems.
Scientists are tackling complex challenges in transportation using comprehensive capabilities at ORNL's National Transportation Research Center and the laboratory's signature strengths in high-performance computing, neutron sciences, materials science, and advanced manufacturing. Research focuses on electrification, efficiency of combustion and emissions, data science and automated vehicles, and materials for future systems.
2016 Vehicle Technologies Market Report
6/23/2017
The 2016 Vehicle Technologies Market Report is the eighth edition of this report, which details the major trends in U.S. light-duty vehicle and medium/heavy truck markets as well as the underlying trends that caused them. This report is supported by the U.S. Department of Energy's (DOE) Vehicle Technologies Office (VTO), and, in accord with its mission, pays special attention to the progress of high-efficiency and alternative-fuel technologies.
Authors: Davis, S.C.; Williams, S.E.; Boundy, R.G.; Moore, S.