Performance of Automotive Fuel Cell Systems with Nanostructured Thin Film Catalysts
1/1/2007
Cost and durability are generally regarded as the major challenges to commercialization of fuel cells. Size, weight, and system complexity are also important barriers to adoption of fuel cells in light duty vehicles. In addition, thermal and water management for fuel cells are outstanding issues. Fuel cell operation at lower temperatures creates a small difference between the operating and ambient temperatures, necessitating large heat exchangers. Fuel and air feed streams need to be humidified for proper operation of fuel cells. In this paper, we evaluate the prospects of overcoming the barriers of cost, durability, weight, volume, thermal management, and water management by using nanostructured thin film catalysts (NTFCs) in membrane electrode assemblies (MEAs) In laboratory tests, the NSTF catalysts have shown significantly enhanced stability against surface area loss from Pt dissolution when compared to conventional Pt/C dispersed catalysts under both accelerated voltage cycling from 0.6 to 1.2 V and real-time start stop cycles. Also NSTF catalyst support-whiskers have shown total resistance to corrosion when held at potentials up to 1.5 V for 3 hours.
Authors: Ahluwalia, R.; Wang, X.; Lasher, S.; Sinha, J.; Yang, Y.; Sriramulu, S.