Publications

Find publications about alternative transportation, including alternative fuels, advanced vehicles, and regulated fleets.

Search Results | 100 publications
Title Author Date Category
User Perceptions of the Risks of Electric, Shared, and Automated Vehicles Remain Largely Unexplored Kurani, K. 2/12/2021 Reports

UC Davis, National Center for Sustainable Transportation, Davis, California

Advocates of electric, shared, and automated vehicles (e-SAVs) envision a future in which people no longer need to drive their privately owned, petroleum-fueled vehicles. Instead, for daily travel they rely on fleets of electric, automated vehicles that offer travel services, including the option to share, or “pool,” rides with strangers. The design, deployment, and operation of e-SAVs will require widespread willingness of users to share with strangers vehicles that are capable of fully automated driving. To achieve the environmental and societal goals of e-SAVs it is critical to first understand and address safety and security concerns of potential and actual users. Researchers at the University of California, Davis, reviewed the literature to understand potential users’ perceptions of safety and security risks posed by intertwined social and technical systems of e-SAVs and proposed a framework to advance research, policy, and system design. This policy brief summarizes the findings of that work and provides policy implications.

Transportation Electrification in North Carolina Smith, C. 2/1/2021 Reports

Atlas Public Policy, Washington, DC

This brief provides an overview of the state of the plug-in electric vehicle (PEV) market and deployment in North Carolina while also highlighting travel patterns and transit agency statistics, along with snapshots of PEV policy and program examples from other states. Statewide transportation electrification roadmaps and funding available through the Volkswagen Settlement have generated momentum in North Carolina and can be harnessed to accelerate the PEV market across the state and position it as a regional and national leader.

Transportation Energy Data Book: Edition 39 Davis, S.C.; Boundy, R.G. 2/1/2021 Books & Chapters

Oak Ridge National Laboratory, Oak Ridge, Tennessee; Roltek, Inc., Clinton, Tennessee

The Transportation Energy Data Book: Edition 39 is a statistical compendium prepared and published by Oak Ridge National Laboratory (ORNL) under contract with the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office. Designed for use as a desk-top reference, the Data Book represents an assembly and display of statistics and information that characterize transportation activity, and presents data on other factors that influence transportation energy use. The purpose of this document is to present relevant statistical data in the form of tables and graphs. The latest edition of the Data Book is available via the Internet (tedb.ornl.gov).

National Park Service Bus Electrification Study: 2020 Report Gilleran, M.; Kotz, A.; Eudy, L.; Kelly, K. 2/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report summarizes important considerations for implementing battery electric buses (BEBs) in the three national park fleets, detailing information about current buses at each fleet, electric bus demonstration vehicles, and performance evaluations of BEBs in Zion, Bryce, and Yosemite. Results include in-use data collection metrics such as average bus speed, energy usage per trip, and daily distance traveled. Also covered are effects of high heating, ventilation, and air-conditioning system use to both heat and cool the buses, emissions estimations before and after use of electric buses, operating costs, electric vehicle infrastructure, maintenance, and bus driver user experience survey information.

When Might Lower-Income Drivers Benefit from EVs? Quantifying the Economic Equity Implications of EV Adoption Bauer, G.; Hsu, C.; Lutsey, N. 2/1/2021 Reports

International Council on Clean Transportation (ICCT), Washington, DC

Plug-in electric vehicles (PEVs) can dramatically reduce local air pollution and carbon emissions, but relatively little analysis has been done on the broader potential economic benefits as the technology matures and costs decline. As governments seek to integrate decarbonization policy with environmental justice goals, it will be critical to ensure equal access to clean technology. This report focuses on the potential benefits of equitable electrification and assesses when PEVs will become affordable more broadly across different households.

Clean Cities Coalitions Overview 1/12/2021 Brochures & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

This fact sheet provides an overview of the U.S. Department of Energy's (DOE's) Vehicle Technologies Office Clean Cities coalitions, which advance affordable, domestic transportation fuels and technologies nationwide. Nearly 100 coalitions serve as the foundation of Clean Cities, working in communities across the country to help local decision makers and fleets understand and implement alternative and renewable fuels, idle-reduction measures, fuel economy improvements, new mobility choices, and emerging transportation technologies. At the national level, VTO develops and promotes publications, tools, and other unique resources to support coordinators. At the local level, coalitions leverage these resources to create networks of stakeholders.

Assembly Bill 2127 Electric Vehicle (EV) Charging Infrastructure Assessment (Staff Report) Crisostomo, N.; Krell, W.; Lu, J.; Ramesh, R. 1/1/2021 Reports

California Energy Commission, Sacramento, California

Assembly Bill 2127, 2018, requires the California Energy Commission (CEC) to prepare a statewide assessment of the charging infrastructure needed to achieve the goal of five million zero-emission vehicles on the road by 2030. Executive Order N-79-20, 2020, directed the CEC to expand this assessment to support the levels of plug-in electric vehicle adoption required by the Order. This report identifies trends and market, technical, and policy solutions that would advance transportation electrification to benefit all Californians. It outlines a vision where charging is accessible, smart, widespread, and easier than a trip to the gas station.

Electrification Futures Study: Scenarios of Power System Evolution and Infrastructure Development for the United States Murphy, C.; Mai, T.; Sun, Y.; Jadun, P.; Muratori, M.; Nelson, B.; Jones, R. 1/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; Northern Arizona University, Flagstaff, Arizona; Evolved Energy Research, San Francisco, California

This report is the fifth publication in a series of Electrification Futures Study (EFS) publications. The report presents scenarios of the U.S. electricity and energy systems through 2050. The scenarios encompass a wide range of future conditions, including the different electrification levels that were developed for the <a href=" https://afdc.energy.gov/files/u/publication/electrification_futures_study.pdf">second EFS report</a>. The scenario results include projected changes to the physical infrastructure of the U.S. power system, the utilization of that infrastructure, and estimates of other impacts of electrification to the power system and broader energy system.

The Shape of Electrified Transportation Muratori, M.; Mai, T. 1/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado

For more than a century, petroleum fuels have been relied upon to move people and goods within and between towns and cities, and on roads, railways, farms, waterways, and in the air. These fuels have provided reliable and convenient mobility options to power the modern global economy. However, these benefits have also created challenges associated with geopolitics, energy security, price volatility, and environmental impacts. Electric vehicles could dramatically disrupt the transportation energy demand landscape. Such a change comes with its own challenges and benefits. This report summarizes the trends driving vehicle electrification and explores the associated challenges and benefits.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: Second Quarter 2020 Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 1/1/2021 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Washington, D.C.

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the second calendar quarter of 2020. Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

Developing Markets for Zero Emission Vehicles in Short Haul Goods Movement Giuliano, G., Dessouky, M., Dexter, S., Fang, J., Hu, S., Steimetz, S. 12/10/2020 Reports

University of California, Davis, California

This report examines the potential market share for zero emission heavy duty trucks (ZEHDTs) via simulation modeling, case studies, interviews, and a survey. It assesses the impacts of ZEHDTs on freight operations. Additionally, it compares the costs and benefits of using diesel, natural gas hybrid, and all-electric vehicles for 2020, 2025, and 2030. Lastly, this report presents recommendations for promoting and increasing the market share of ZEHDTs and hybrids.

Notes:

This copyrighted publication can be accessed through the University of California, Davis National Center for Sustainable Transportation website.

Accelerating Ride-Hailing Electrification: Challenges, Benefits, and Options for State Action Hunt, J.; McKearnan, S. 12/2/2020 Reports

Northeast States for Coordinated Air Use Management, Boston, Massachusetts

In the United States, use of ride-hailing services has grown at a steep rate over the last decade, and this trend is expected to continue. A rapid transition in ride-hailing fleets from internal combustion engine vehicles to plug-in electric vehicles (PEVs) would reduce emissions of greenhouse gases and other air pollutants, increase consumer exposure to PEVs, deliver maintenance and fuel cost savings to drivers, and improve the business case for fast charging infrastructure by increasing utilization. This paper identifies the benefits and challenges associated with transitioning vehicles driving on transportation network company platforms to PEVs and recommends specific actions states can take to support and accelerate the transition.

Assessing the Potential for Low-Carbon Fuel Standards as a Mode of EV Support Kelly, C.: Pavlenko, N. 12/1/2020 Reports

International Council on Clean Transportation, Washington, D.C.

Low-carbon fuel standards (LCFS), which regulate the carbon intensity of fuels supplied to transportation, can provide long-term, durable funding for plug-in electric vehicle (PEV) infrastructure and PEV purchasing incentives as other policies such as rebates expire or are phased-down. This study assesses the role that a national LCFS program can play in accelerating the rate of light-duty passenger PEV and charging infrastructure deployment.

Florida Electric Vehicle Roadmap Smith Burk, K.; Groover Combs, A.; Kettles, D.; Reed, K. 12/1/2020 Reports

FDACS and Central Florida Clean Cities, Tallahassee, Florida; Central Florida Clean Cities Coalition, Cocoa, Florida

In May 2019, the Florida Department of Agriculture and Consumer Services’ Office of Energy began working on a plug-in electric vehicle (PEV) roadmap for the state of Florida. This roadmap provides a comprehensive investigation into the status and needs of PEV charging infrastructure in Florida for the following three to four years. This roadmap identifies PEV charging infrastructure impacts on the electric grid, solutions for any negative impacts, areas that lack PEV charging infrastructure, best practices for siting PEV charging stations, and technical or regulatory barriers to expansion of PEV charging infrastructure. It also provides recommendations that address permitting, emergency evacuation needs, and education.

Electrification Assessment of Public Vehicles in Washington Satterfield, C.; Nigro, N.; Wood, E.; Jensen, J.; Smith, C.; Desai, R.; Lepre, N.; Ge, Y. 11/30/2020 Reports

Atlas Public Policy, Washington, District of Columbia; National Renewable Energy Laboratory, Golden, Colorado; Washington State University, Pullman, Washington

Washington State is positioned to cost effectively electrify nearly all public vehicles by the year 2035. With near-term policy action and targeted investments in infrastructure, the state can accelerate ongoing efforts to advance electric vehicles (EVs) and solidify its leadership position in the EV market in the United States. This assessment evaluates the electrification potential for all publicly owned vehicles in the State of Washington. It provides Washington with comprehensive, vehicle-specific electrification cost estimates both today and in the future along with actionable information on how to efficiently move forward with fleet electrification.

Electrifying Freight: Pathways to Accelerating the Transition Buholtz, T.; Burger, A.; Gander, S.; Nelson, B.; Prochazka, B.; Swalnick, N 11/1/2020 Reports

Electrification Coalition, Washington, District of Columbia

The U.S. economy is heavily dependent on the functionality of our freight and goods transportation services. Road freight transportation in the United States is projected to grow steadily in the coming decades, and electric vehicles (EVs) are emerging as a clean and cost-effective alternative. This report outlines the benefits of electric trucks, explains the major barriers impeding their production, sales, and deployment, and establishes the next steps that manufacturers, policymakers, fleet operators, and other stakeholders should take to facilitate and accelerate freight electrification.

Fleet-Wide Electrification Impacts Assessment for the Valley Transportation Authority Eichman, J.; Kotz, A.; Miller, E.; Kelly, K.; Ficenec, K. 11/1/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report explores the long-term electrification opportunities for the Valley Transit Authority’s (VTA) transit bus fleet. It also explores the potential for transit bus electrification at VTA as well as the economic impacts of partial and complete electrification. Further, the report includes the optimal charging, operation and lowest capital and operating cost solution to achieve different levels of electrification to meet VTA’s existing routes.

Summary Report on Electric Vehicles at Scale and the U.S. Electric Power System 11/1/2020 Reports

Department of Energy, D.C., United States

Plug-in electric vehicles (PEVs) can meet U.S. personal transportation needs using domestic energy resources while at the same time offering carbon emissions benefits. However, wide scale light-duty PEV adoption will necessitate assessment of and possibly modification to the U.S. electric power generation and distribution systems. This report gauges the sufficiency of both energy generation and generation capacity in the U.S. electric power system to accommodate the growing fleet of light duty PEVs.

Expanding Equitable Access to EV Mobility: Examples of Innovative Policies and Programs 9/21/2020 Reports

This document describes examples of how state governments and their partners across the United States are working on improving equitable access to light-duty plug-in electric vehicle mobility in low- and moderate-income (LMI) communities. In addition, this document covers the importance of early engagement for assessing the mobility needs and gaps in LMI communities, identifying strategic approaches to expanding equitable mobility, and finding local leaders.

Hydrogen Station Permitting Guidebook Brazil Vacin, G.; Eckerle, T.; Kashuba, M. 9/1/2020 Reports

California Governor’s Office of Business and Economic Development (GO-Biz), Sacramento, California

This guidebook is comprised of six parts and is intended to help station developers and local jurisdictions navigate and streamline the infrastructure development process. It reflects the latest best practices collected from stations developers and local jurisdictions with experience in the hydrogen stations development process.

2020 Annual Evaluation of Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Development 9/1/2020 Reports

California Air Resources Board, Sacramento, California

California's Assembly Bill 8 requires the California Air Resources Board (ARB) to assess the size of the current and future fuel cell electric vehicle (FCEV) fleet annually, based on vehicle registrations with the Department of Motor Vehicles, auto manufacturer responses to ARB surveys of projected future sales, and current and future hydrogen fuel station locations and capacity. This information informs the state’s decisions for future funding of hydrogen fuel stations, including the number and location of stations as well as minimum technical requirements for those stations. This report provides ARB’s analysis of the current status and near-term projections of FCEV deployment and station network development and the actions necessary to maintain progress and enable continued future expansion.

Update on Electric Vehicle Adoption Across U.S. Cities Bui A.; Slowik, P.; Lutsey. N. 8/31/2020 Reports

The International Council on Clean Transportation, San Francisco, California

This briefing builds upon the International Council on Clean Transportation’s annual U.S. plug-in electric vehicle (PEV) market analysis of state, local, and utility actions to promote PEVs. It assesses relationships between PEV uptake and various underlying factors including incentives, charging infrastructure, model availability, access to high-occupancy vehicle lanes, and regional policy actions. The analytical focus is primarily on the 50 most populous U.S. metropolitan areas, which collectively accounted for 55% of the nation’s population.

Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2020 Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E. 8/28/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF

The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the first calendar quarter of 2020 (Q1). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.

SMART Mobility Decision Science Capstone Report Spurlock, C.; Gopal, A.; Auld, J.; Leiby, P.; Sheppard, C.; Wenzel, T.; Belal, S.; Duvall, A.; Enam, A.; Fujita, S.; Henao, A.; Jin, L.; Kontou, E.; Lazar, A.; Needell, Z.; Rames, C.; Rashidi, T.; Sears, T.; Sim, A.; Stinson, M.; Taylor, M.; Todd-Blick, A.; Verbas, O.; Walker, V.; Ward, J.; Wong-Parodi, G.; Wu, K.; Yang, H. 8/5/2020 Reports

Lawrence Berkeley National Laboratory, Berkeley, California; Argonne National Laboratory, Lemont, Illinois; National Renewable Energy Laboratory, Golden, Colorado; Oak Ridge National Laboratory, Oak Ridge, Tennessee; Carnegie Mellon University, Pittsburgh, Pennsylvania; University of California at Berkeley, Berkeley, California; Stanford University, Stanford, California; Youngstown State University, Youngstown, Ohio; University of New South Wales, Kensington, Australia

<p>The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.</p><p>This report summarizes the work of the Mobility Decision Science Pillar. The Mobility Decision Science Pillar sought to fill gaps in existing knowledge about the human role in the mobility system including travel decision-making and technology adoption in the context of future mobility. The objective was to study how underlying preferences, needs, and contextual factors might constrain or hasten future transportation system scenarios.</p>

SMART Mobility Multi-Modal Freight Capstone Report Zhao, Y.; Birky, A.; Moore, A.; Walker, V.; Stinson, M.; Smith, D.; Jones, P. 8/3/2020 Reports

Lawrence Berkeley National Laboratory, Berkeley, California; Argonne National Laboratory, Lemont, Illinois; National Renewable Energy Laboratory, Golden, Colorado; Oak Ridge National Laboratory, Oak Ridge, Tennessee; Idaho National Laboratory, Idaho Falls, Idaho

<p>The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.</p><p>This report summarizes the work of the Multi-Modal Freight Pillar. The Multi Modal Freight Pillar’s objective is to assess the effectiveness of emerging freight movement technologies and understand the impacts of the growing trends in consumer spending and e-commerce on parcel movement considering mobility, energy, and productivity.</p>

High-Potential Regions for Electric Truck Deployments 8/1/2020 Reports

North American Council for Freight Efficiency and Rocky Mountain Institute, Basalt, Colorado

Regional haul, heavy-duty trucking operations are good candidates for electrification due to the segment’s relatively short-hauls and return-to-base operations. Many early electric truck deployments have taken place in California, but as the market matures, fleets, utilities, manufacturers, policymakers, charging companies, and other industry stakeholders are seeking assistance to prioritize regions outside California for future deployments of this technology. This guidance report proposes a three-part framework that the industry can use to prioritize regions for electric truck deployments based on technology, need, and support.

Notes: This report is copyrighted and can be accessed through North American Council for Freight Efficiency website.

Evolution of Plug-In Electric Vehicle Charging Infrastructure in the United States Brown, A.; Lommele, S.; Eger, R.; Schayowitz, A. 8/1/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Fairfax, Virginia

The U.S. Department of Energy’s Alternative Fuels Data Center (AFDC) has tracked alternative fueling and electric vehicle charging infrastructure in the United States since 1991. This paper explores the history of the AFDC Station Locator, which was launched in 1999, and discusses the growth of electric vehicle supply equipment. It also looks at how electric vehicle drivers access public charging, and evaluates challenges, gaps, and opportunities facing both electric vehicle drivers and the industry as a whole.

SMART Mobility Modeling Workflow Development, Implementation, and Results Capstone Report Rousseau, A.; Sheppard, C.; Auld, J.; Souza, F.; Enam, A.; Freyermuth, V.; Gardner, M.; Garikapati, V.; Needell, Z.; Stinson, M.; Verbas, O.; Wood, E. 7/28/2020 Reports

Argonne National Laboratory, Lemont, Illinois; Lawrence Berkeley National Laboratory, Oak Ridge, Tennessee; University of California at Berkeley, Berkeley, California; National Renewable Energy Laboratory, Golden, Colorado

<p>The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.</p><p>This report summarizes the work of the SMART Mobility Modeling Workflow effort. The SMART Mobility Modeling Workflow was developed to evaluate new transportation technologies such as connectivity, automation, sharing, and electrification through multi-level systems analysis that captures the dynamic interactions between technologies. By integrating multiple models across different levels of fidelity and scale, the Workflow yields insights about the influence of new mobility and vehicle technologies at the system level.</p>

SMART Mobility Advanced Fueling Infrastructure Capstone Report Smart, J.; Bi, J.; Birky, A.; Borlaug, B.; Burrell, E.; Kontou, E.; Lee, D.; Lipman, T.; Meintz, A.; Miller, E.; Mohamed, A.; Moniot, M.; Moore, A.; Motoaki, Y.; Needell Z.; Onar, O.; Rames, C.; Reinicke, N.; Roni, M.; Salisbury, S.; Sheppard, C.; Toba, A.; Walker, V.; Weigl, D.; Wood, E.; Xie, F.; Yi, Z.; Zeng T.; Zhang, H.; Zhou, Y.; Zhou, Z. 7/22/2020 Reports

Idaho National Laboratory, Idaho Falls, Idaho; National Renewable Energy Laboratory, Golden, Colorado; Argonne National Laboratory, Lemont, Illinois; Oak Ridge National Laboratory, Oak Ridge, Tennessee; Lawrence Berkeley National Laboratory, Berkeley, California

<p>The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.</p><p>This report summarizes the work of the Advanced Fueling Infrastructure Pillar. This Pillar investigated the charging infrastructure needs of electric ride-hailing and car-sharing vehicles, automated shuttle buses, and freight-delivery truck fleets.</p>

SMART Mobility Connected and Automated Vehicles Capstone Report Rask,E.; Auld, J.; Bush, B.; Chen,Y.; Freyermuth, V.; Gohlke, D.; Gonder, J.; Greenblatt, J.; Han, J.; Holden, J.; Islam, E.; Javanmardi, M.; Jeong, J.; Karbowski, D.; Kim, N.; Lammert, M.; Leiby, P.; Lin, Z.; Lu, X.; Mohammadian, K.; Parsa, A.; Rios-Torres, J.; Rousseau, A.; Shabanpour, R.; Shladover, S.; Shen, D.; Shirk, M.; Stephens, T.; Sun, B.; Verbas, O.; Zhang, C. 7/22/2020 Reports

Idaho National Laboratory, Idaho Falls, Idaho; National Renewable Energy Laboratory, Golden, Colorado; Argonne National Laboratory Lemont, Illinois; Oak Ridge National Laboratory, Oak Ridge, Tennessee; Lawrence Berkeley National Laboratory, Berkeley, California; University of Illinois at Chicago, Chicago, Illinois

<p>The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale. </p><p>This report summarizes the work of the Connected and Automated Vehicles (CAVs) Pillar. This Pillar investigated the energy, technology, and usage implications of vehicle connectivity and automation and identified efficient CAV solutions.</p>

Levelized Cost of Charging Electric Vehicles in the United States Borlaug, B.; Salisbury, S.; Gerdes, M.; Muratori, M. 7/15/2020 Reports

Elsevier Inc., Amsterdam, Netherlands

The cost to charge an electric vehicle (EV) varies depending on the price of electricity at different charging sites (home, workplace, or public), vehicle use, region, and time of day, and for different charging power levels and equipment and installation costs. This paper provides a detailed assessment of the 2019 levelized cost of light-duty PEV charging in the United States, considering the purchase and installation costs of charging equipment and electricity prices from real-world utility tariffs.

Notes:

This Joule article (Vol. 4, Issue 7, (July 2020): pp. 1470-1485) is copyrighted by Elsevier Inc. and can be accessed through Science Direct.

Plug-In Electric Vehicle Showcases: Consumer Experience and Acceptance Singer, M. 7/2/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado

In 2016 the U.S. Department of Energy's (DOE) Office of Energy Efficiency and Renewable Energy's Vehicle Technologies Office (VTO) announced three awardees to hold plug-in electric vehicle (PEV) showcases to demonstrate available technologies and provide a hands-on consumer experience at conveniently located, brand-neutral settings. The events varied in style from long term stationary storefront settings to weekend events at a variety of regional venues. Attendees could interact with the technology through ride-and-drives and longer-term test drives. The events began in the spring of 2017 and continued through 2019.

Electric Vehicles at Scale - Phase I Analysis: High Electric Vehicle Adoption Impacts on the Western U.S. Power Grid Kintner-Meyer, M.; Davis, S.; Sridhar, S.; Bhatnagar, D.; Mahserejian, S.; Ghosal, M. 7/1/2020 Reports

Pacific Northwest National Laboratory, Richland, Washington

The use of plug-in electric vehicles (PEVs) in the United States has grown significantly during the last decade. Pacific Northwest National Laboratory performed a study on how PEVs at scale affect the electric grid as an aggregated new load. The Phase I study focused on the bulk power electricity impacts on the Western grid. This analysis addresses the following two key questions: 1) Are there sufficient resources in the U.S. bulk power grid to provide the electricity for charging a growing PEV fleet? and 2) What are the likely operational changes necessary to accommodate a growing PEV fleet?

Financial Analysis of Battery Electric Transit Buses Johnson, C.; Nobler, E.; Eudy, L.; Jeffers, M. 6/10/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado

A baseline bus fleet and battery electric bus investment scenario was developed based on the average or common parameters of existing battery electric bus (BEB) fleets. A discounted cashflow analysis was done that found the baseline fleet to have a net present value of $785,000 and simple payback of 3.3 years. The 33 main parameters were then swung ±50% to determine their relative influence on NPV and were ranked accordingly. Then parameter volatility was estimated by dividing the range of observed values by the baseline value. The parameters that are most influential and volatile were highlighted as the ones fleet managers should focus on when determining if BEBs are a good investment option for them. These top parameters are 1) BEB purchase price, 2) purchase price of foregone diesel bus, 3) grant amount, 4) maintenance costs of foregone diesel bus, 5) annual vehicle miles traveled.

Assessment of Light-Duty Plug-In Electric Vehicles in the United States, 2010-2019 Gohlke, D.; Zhou, Y. 6/1/2020 Reports

Argonne National Laboratory, Lemont, Illinois

This report examines properties of plug-in electric vehicles (PEVs) sold in the United States from 2010 to 2019, exploring vehicle sales, miles driven, electricity consumption, petroleum reduction, vehicle manufacturing, and battery production, among other factors. Over 1.4 million PEVs have been sold, driving over 37 billion miles on electricity since 2010, thereby reducing national gasoline consumption by 0.34% in 2019 and 1.4 billion gallons cumulatively through 2019. In 2019, PEVs used 4.1 terawatt-hours of electricity to drive 12.7 billion miles, offsetting 470 million gallons of gasoline. Since 2010, 69% of all PEVs have been assembled in the United States, and over 60 gigawatt-hours of lithium-ion batteries have been installed in vehicles to date.

The Automated Mobility District Implementation Catalog – Insights from Ten Early-Stage Deployments Young, S.; Lott J. S. 6/1/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado

Major disruptive technologies are set to redefine the way in which people view travel, particularly in dense urban areas. Already, ride-hailing services have redefined mobility expectations of a new generation of urban dwellers in some places around the country. Over the next few decades, the proliferation of automated vehicles1 (AVs), will be enhanced by the next generation of shared mobility. This combination of AV operations with on-demand service will provide convenience of mobility similar to that being exhibited in today’s transportation networking companies (TNCs). Shared, automated, public mobility resulting from the cross- hybridization of AVs with on-demand mobility service will bring economic and system efficiencies. Economic efficiencies may be realized by less vehicle ownership and more vehicle “usership.” Many companies are already exploring avenues for shared automated mobility through fleet operations as the wave of the future.

Grid Impact Analysis of Heavy-Duty Electric Vehicle Charging Stations Zhu, X.; Mather, B.; Mishra, P. 5/7/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado

This paper presents a grid impact analysis of heavy-duty electric vehicle (EV) charging stations. Authors assumed heavy-duty EVs will have battery capacities high enough to provide a range of 250 to 500 miles on a single charge. Heavy-duty EVs will require extremely fast charging rates to reduce charging time and will induce very high charging loads (at the multiple-megawatt scale) if several vehicles charge at the same time. This project develops a systematic procedure to analyze the potential impact of the placement of charging stations on the grid. Additionally, it develops initial mitigation solutions based on insights from this analysis.

Notes: This report is copyrighted by IEEE and can be accessed through IEEE.

Foundations of an Electric Mobility Strategy for the City of Mexicali Johnson, C.; Nanayakkara, S.; Cappellucci, J.; Moniot, M. 5/4/2020 Reports

National Renewable Energy Laboratory, Golden, Colorado

The Foundations of an Electric Mobility Strategy for the city of Mexicali aligns with numerous energy, environmental, and transport plans and will help Mexicali meet multiple related goals. Mexicali’s energy mix, with 28% renewables, already enables plugin electric vehicles (PEVs) to reduce the mass of greenhouse gases (GHGs) per km driven 2/3 below that of their conventional counterparts. This GHG benefit will increase should Mexicali take steps to further increase their share of renewables in their electricity supply. Beyond increasing renewables, Mexicali could possibly deploy PEVs so that electric load is added in the right location (depending on further analysis of substations and feeders) and at the right time (between 21:00 and 11:00) in order to minimize grid upgrade costs. There are a handful of charge timing control mechanisms –at various stages of development– that Mexicali could implement. Transport electrification can facilitate mass transit by powering buses, trains, and small vehicles that get people from their homes or work to the transit stations and vice versa. Mexicali could utilize fleets as early PEV adopters in order to gain acceptance and add electric vehicle supply equipment (EVSE). Recommended prioritization of different types of fleets are suggested in this report: transit buses, school buses, airport ground support equipment (GSE), refuse trucks, taxis, shuttle buses, campus vehicles, delivery trucks, utility trucks, and finally semitrailers. There are a handful of policy options that Mexicali could use to incentivize fleets to purchase PEVs, including mandates, economic incentives, energy performance contracts, waivers to access restrictions, electricity discounts, and EVSE requirements in building codes. Mexicali’s taxi fleet was an early adopter of PEVs and had experienced some challenges—mostly related to the insufficient range of the taxis due to hot weather.

Public Electric Vehicle Charging Business Models for Retail Site Hosts Satterfield, C.; Nigro, N. 4/29/2020 Reports

Atlas Public Policy, Washington, D.C.

As the passenger plug-in electric vehicle (PEV) market grows in the United States, public PEV charging stations will become increasingly important to serve the charging needs of millions of drivers. For retailers, PEV charging stations offer an opportunity to produce new revenue streams or expand on existing ones while also advancing broader efforts to reduce global greenhouse gas emissions. This brief provides an overview of PEV market growth and the role of public charging options, along with the potential benefits to retailers of hosting PEV charging infrastructure.

Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation Jeffers, M.A.; Miller, E.; Kelly, K.; Kresse, J.; Li, K.; Dalton, J.; Kader, M.; Frazier, C. 4/14/2020 Journal Articles & Abstracts

National Renewable Energy Laboratory, Golden, Colorado

Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture.

Notes: This report is copyrighted and can be accessed through SAE International in United States website.

Guidebook for Deploying Zero-Emission Transit Buses Linscott, M.; Posner, A. 4/1/2020 Reports

Center for Transportation and the Environment, Atlanta, Georgia

The zero‐emission bus market, including electric buses and fuel cell electric buses, has seen significant growth in recent years. Zero-emission buses do not rely on fossil fuels for operation and have zero harmful tailpipe emissions, improving local air quality. The increase in market interest has also helped decrease product pricing. This guidebook is designed to provide transit agencies with information on current best practices for zero-emission bus deployments and lessons learned from previous deployments, industry experts, and available industry resources.

Notes: This report is copyrighted and can be accessed through the National Academy of Sciences website.

Charging Infrastructure Requirements to Support Electric Ride-Hailing in U.S. Cities Nicholas, M.; Slowik, P.; Lutsey, N. 3/24/2020 Reports

International Council on Clean Transportation, Washington, D.C.

This working paper assesses the charging infrastructure needs to support the growth of electric ride-hailing in U.S. cities. The analysis quantifies the amount and type of infrastructure needed and specifically analyzes the extent to which electric ride-hailing fleets can take advantage of underutilized public charging infrastructure capacity.

Notes:

This copyrighted publication can be accessed on The International Council on Clean Transportation's website.

R&D Insights for Extreme Fast Charging of Medium- and Heavy-Duty Vehicles: Insights from the NREL Commercial Vehicles and Extreme Fast Charging Research Needs Workshop, August 27-28, 2019 Walkowicz, K.; Meintz, A.; Farrell, J. 3/1/2020 Conference Papers & Proceedings

National Renewable Energy Laboratory, Golden, Colorado

As battery costs have declined and battery performance has improved, the applicability of vehicle electrification has expanded beyond passenger cars to the commercial vehicle sector. However, due to the larger batteries that would be needed for the medium- and heavy-duty (MDHD) sector, the electric charging capabilities to serve these larger commercial vehicles will need to be substantially more powerful than light-duty chargers. More specifically, such 'extreme fast charging' (XFC) will likely need to reach the megawatt scale to provide a full charge in less than 30 minutes in some applications. In addition, the combined cost of electrified vehicles and charging must be competitive with the costs of petroleum-based technologies and other alternatives to encourage widespread adoption of battery electric vehicles (BEVs) among MDHD fleets. Most of these fleets have a commercial mission and demand low total cost of ownership (TCO) (which motivates minimal refueling times) and high performance from their vehicles.

Insights on Electric Trucks for Retailers and Trucking Companies Leung, J.; Peace, J. 2/28/2020 Reports

Center for Climate and Energy Solutions, Arlington, Virginia

The Center for Climate and Energy Solutions (C2ES) has partnered with the Retail Industry Leaders Association, Atlas Public Policy, and David Gardiner and Associates to explore the landscape and outlook for electric trucks for freight movement. This joint initiative assesses the market landscape, challenges, and opportunities for electric truck adoption among retailer shippers and their transportation partners.

Assessing Financial Barriers to the Adoption of Electric Trucks Satterfield, C.; Nigro, N. 2/20/2020 Reports

Atlas Public Policy, Washington, D.C.

Medium- and heavy-duty electric vehicles (EVs) are a relatively new technology and many freight industry stakeholders lack access to independent analysis to help make informed decisions about electric trucks and charging infrastructure options. This paper assesses the market landscape, challenges, and opportunities for electric truck adoption among major shippers and their transportation partners by performing a total cost of ownership analysis for EVs under a wide range of procurement scenarios and comparing these results with those from an equivalent diesel vehicle procurement.

Public charging infrastructure for plug-in electric vehicles: What is it worth? Greene, D.L.; Kontou, E.; Borlaug, B.; Brooker, A.; Muratori, M. 2/7/2020 Journal Articles & Abstracts

University of Tennessee, Knoxville, Tennessee; University of Illinois at Urbana-Champaign, Urbana, Illinois; National Renewable Energy Laboratory, Golden, Colorado

Lack of charging infrastructure is a significant barrier to the growth of the plug-in electric vehicle (PEV) market. Quantifying the value of public charging infrastructure can inform analysis of investment decisions and can help predict the impact of charging infrastructure on future PEV sales. This report focuses on quantifying the value of public chargers in terms of their ability to displace gasoline use for plug-in hybrid electric vehicles and to enable additional electric vehicle miles for all-electric vehicles, thereby mitigating the limitations of shorter range and longer charging time.

Notes:

This Transportation Research Part D: Transport and Environment article (Vol. 78, January 2020, 102182) is copyrighted by Elsevier Ltd. and can be accessed through Science Direct.

Battery Second Life: Frequently Asked Questions Kelly, J.C. 2/6/2020 Brochures & Fact Sheets

Argonne National Laboratory, Lemont, Illinois

This fact sheet describes possible second-life applications for lithium-ion batteries when they no longer meet the demands of an electric vehicle.

Cost Reduction of School Bus Fleet Electrification With Optimized Charging and Distributed Energy Resources Becker, W.; Miller, E.; Mishra, P.P.; Jain, R.; Olis, D.; Li , X. 2/1/2020 Conference Papers & Proceedings

National Renewable Energy Laboratory, Golden, Colorado

This report presents considerations for electrifying school buses with an analysis of battery sizing to match bus-driving requirements. This study optimizes the electric school bus charging and vehicle-to-building dispatch to evaluate the potential to reduce the impact of the bus charging on a school’s electric utility bill. Further, it analyzes the effect of degradation on the school bus batteries to determine if the smart-charging and vehicle-to-building battery operation decreases the life of the battery.

Notes:

This copyrighted publication can be viewed on The Institute of Electrical and Electronics Engineers's website.

Best Practices for Electric Vehicle Supply Equipment Installations in the National Parks - Challenges, Lessons Learned, Installation Best Practices, and Recommendations for the National Park Service Kelly, K.; Noblet., S.; Brown, A. 12/27/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado; ICF, Golden, Colorado

This report captures challenges, lessons learned, and best practices from recent National Park Service (NPS) electric vehicle supply equipment projects based on interviews with NPS employees and stakeholders involved in the projects. The report summarizes notable takeaways and makes recommendations to help ensure the success of future charging installation projects. Preserving this information will be valuable for informing and ensuring the success of future charging installation efforts at national parks, as well as for organizations outside of NPS. Note that this report focuses on light-duty plug-in electric vehicle projects, though NPS is also pursuing medium- and heavy-duty electric vehicle efforts.

Clean Cities Coalitions 2018 Activity Report Singer, M.; Johnson, C. 12/27/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

Clean Cities coalition activities resulted in an energy use impact (EUI) of over 1 billion gasoline-gallons equivalent (GGE), comprised of net alternative fuels used and energy savings from efficiency projects, in 2018. Participation in vehicle and infrastructure development projects remained strong, as did alternative fuel use and resulting overall EUI. Clean Cities coalition activities reduce emissions as they impact energy use. Coalition-reported activities prevented 5 million carbon dioxide-equivalent tons of emissions (only greenhouse gas [GHG] emissions are reported here; criteria pollutants and other emissions are not included in this report). Coalitions were successful in securing project grant awards from numerous (non-DOE) outside sources. For other Federal, State, and local agencies and private sector foundations, see funding section on page 25. The 84 project grant awards in 2018 generated $251 million in funds from coalition members and project partners along with $1.9 million in DOE grant funds. Coalitions also collected $1.1 million in stakeholder dues and $2.9 million in operational funds from host organizations. In macro terms, this supplemental funding represents nearly a 7:1 leveraging of the $37.8 million that was included in the VTO Technology Integration budget in Fiscal Year 2018. Clean Cities coordinators spent nearly 121,000 hours pursuing their coalitions' goals in 2018. The average coordinator is quite experienced and has held his or her position for at least eight years. Coordinators logged more than 3,805 outreach, education, and training activities in 2018, which reached an estimated 35 million people.

Preparing to Plug-In Your Bus Fleet: 10 Things to Consider 12/5/2019 Reports

Edison Electric Institute, Washington, D.C.

The purpose of this guide is to identify some of the key areas where electric companies and their customers can work together to streamline the fleet electrification process. This guide is applicable to any company that operates a fleet, but it is particularly focused on medium- and heavy-duty vehicle fleets that likely will have higher power charging needs. Included in this guide is are 10 key considerations that fleets should know about electric companies and fleet electrification.

Notes:

This report is copyrighted and can be accessed on the Edison Electric Institute’s website.

Alternative Fuels Data Center 12/4/2019 Brochures & Fact Sheets

National Renewable Energy Laboratory, Golden, Colorado

The Alternative Fuels Data Center (AFDC) provides a wealth of information and data on alternative and renewable fuels, advanced vehicles, fuel-saving strategies, and emerging transportation technologies. The site features a number of interactive tools, calculators, and mapping applications to aid in the implementation of these fuels, vehicles, and strategies. The AFDC functions as a dynamic online hub, enabling thousands of stakeholders in the transportation system to interact with one another.

Reducing EV Charging Infrastructure Costs Nelder, C.; Rogers, E. 12/3/2019 Reports

Rocky Mountain Institute, Basalt, Colorado

This report finds that while the cost of hardware components is already falling as manufacturers gradually find ways to lower costs, there are significant “soft costs” that need to be reduced. The costs of permitting delays, utility interconnection requests, compliance with regulations, and the reengineering of projects because they were based on incorrect information, among others, are frequently cited as more significant cost drivers than charging station hardware in the United States.

Notes:

This copyrighted publication can be downloaded from Rocky Mountain Institute's website.

Viable Class 7 and 8 Electric, Hybrid, and Alternative Fuel Tractors 12/1/2019 Reports

North American Council for Freight Efficiency

Trucking is at the start of significant changes in powertrains. The purpose of this report is to help clarify in an unbiased way the differences and similarities in a wide spectrum of developing powertrain choices facing fleets. This report focuses on the primary near-term drivetrain choices for the Class 7 and 8 North American heavy-duty tractor market.

Notes:

This copyrighted publication can be accessed through North American Council for Freight Efficiency's website.

Electric Vehicle Capitals: Showing the Path to a Mainstream Market Hall, D.; Cui, H.; Lutsey, N. 11/20/2019 Reports

International Council on Clean Transportation, Washington, D.C.

This briefing assesses metropolitan area-level data on plug-in electric vehicle (PEV) registrations and identifies the 25 largest PEV markets, which together represent 42% of new passenger PEV sales globally through 2018. To provide a blueprint for other governments, this briefing analyzes the incentives, charging infrastructure, and city promotion actions in these areas that are spurring PEVs into the mainstream.

Notes:

This copyrighted publication can be accessed on The International Council on Clean Transportation's website.

Electric Vehicle Supply Equipment Tiger Team Site Assessment Findings from Army Facilities Bennett, J.; Hodge, C.; Kurnik, C.; Kiatreungwattana, K.; Lynch, L.; Salasovich, J. 10/31/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report examines how the U.S. Army can cost-effectively install electric vehicle supply equipment (EVSE) to prepare for anticipated electric vehicle acquisitions, and summarizes results from 30 EVSE site visits completed at U.S. Army garrisons from 2016 to 2019. Sponsored by the U.S. Department of Energy and U.S. Army, the National Renewable Energy Laboratory deployed Tiger Teams consisting of engineers and fleet experts to review garrison charging needs and develop recommendations for installing EVSE as well as compressed natural gas stations in certain locations.

Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2019 through Jun. 2019 Eudy, L.; Jeffers, M. 10/29/2019 Presentations

National Renewable Energy Laboratory, Golden, Colorado

This report summarizes results of a battery electric bus (BEB) evaluation at Foothill Transit, located in the San Gabriel Valley area of Los Angeles. Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The focus of this evaluation is to compare the performance and the operating costs of the BEBs to that of conventional technology buses and to track progress over time. Previous reports documented results from April 2014 through December 2018. This report extends the data analysis through June 2019. The data period focus of this report is January 2019-June 2019. NREL plans to publish progress reports on the Foothill Transit fleet every 6 months through 2020.

Mobility Data and Models Informing Smart Cities Sperling, J.; Young, S.; Garikapati, V.; Duvall, A.; Beck, J.M. 10/14/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado; Idaho National Laboratory, Idaho Falls, Idaho

Using emerging data platforms, new mobility technologies, and travel demand models (TDMs), researchers, industry, and communities seek to improve the quality of transportation while maximizing the energy efficiency, equity, and safety of transportation services. As transportation may soon reach over 30% of U.S. energy consumption and with urban areas representing an increasing proportion of the U.S. population (>80% since 2010), a critical need exists to engage in urban data science-informed approaches to enhancing mobility. The objective of this study is to explore and document how aspiring Smart Cities are using data and models to inform mobility and energy initiatives within Smart City programs and in so doing identify gaps in knowledge and processes guiding Smart City mobility investment strategies, programs, projects, and pilots. A primary focus of the Smart Cities studied was the creation of an integrated data sharing environment approach. Most of these systems are being developed in parallel with multiple new data analysis tools, while regional metropolitan planning organizations continue to slowly evolve TDMs to take into account impacts of long-term strategies for emerging mobility technologies and services. Smart City initiatives in the United States have keen interests in leveraging knowledge and research on the mobility benefits and risks of automated, connected, efficient/electric, and shared on-demand mobility services; and understanding the related energy, environmental, economic, and societal impacts of these shifts. The results serve to identify key gaps in data, knowledge, and methods required to advance energy efficient urban mobility innovation, and to enable research and analysis collaboration between Smart Cities and the U.S. Department of Energy's efforts enabling new Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility.

What's Afoot in DOE's Clean Cities? AFLEET! 10/9/2019 Brochures & Fact Sheets

Argonne National Laboratory, Lemont, Illinois

AFLEET is a free tool from the U.S. Department of Energy (DOE) that fleet managers can use to quantify the environmental and economic impacts of new fuels and vehicle technologies. The AFLEET factsheet explains how the tool works and how to access it.

Transportation Electrification: States Rev Up Rogotzke, M.; Eucalitto, G.; Gander, S. 9/26/2019 Reports

National Governor's Association, Washington, D.C.

States are pivotal to transitioning the transportation sector to electric drive vehicles. The transition necessitates decisions regarding a wide range of issues, including education and outreach efforts, vehicle and charging infrastructure incentives, the location and specifications of public charging infrastructure, electrification corridor designations and signage and, in some states, allowable vehicle emissions levels. This white paper explores state incentives and other policy tools to advance electrification.

How Can Taxes and Fees on Ride-Hailing Fleets Steer Them to Electrify? Slowik, P.; Wappelhorst, S.; Lutsey, N. 9/19/2019 Reports

International Council on Clean Transportation. Washngton D.C.

The early transition to plug-in electric vehicles (PEVs) continues in many markets. Likewise, the use of ride-hailing services continues to greatly expand. However, only a limited number of vehicles used for ride-hailing—about 1%—are electric, which is less than the global PEV sales share of new vehicles in 2018. This paper analyzes the economic opportunity for government taxes and fees to steer ride-hailing fleets toward electric.

Notes:

This copyrighted publication can be accessed on The International Council on Clean Transportation's website.

Assessing the Business Case for Hosting Electric Vehicle Charging Stations in New York State 9/12/2019 Reports

New York State Energy Research and Development Authority, Albany, New York

As the plug-in electric vehicle (PEV) market grows, so does the demand for public charging stations. Public charging infrastructure expansion is limited by high upfront costs of equipment and installation, uncertain usage of charging services, and consumers’ willingness to pay for public charging. To date, public funding has been an important component of cost recovery and value maximization for station hosts. This white paper evaluates the business case of hosting a Level 2 charging station in New York State. In addition, the report explores scenarios that vary charging-use and revenue sources to better understand the key factors that drive profitability from hosting these stations. The goal of the report is to harness real-world experience to establish an understanding of current charging behavior and inform future efforts to expand the PEV market in New York.

Curb Enthusiasm: Report for On-Street Electric Vehicle Charging 8/15/2019 Reports

NYSERDA, Albany, New York

A critical barrier to the successful large-scale adoption of plug-in electric vehicles (PEVs) in metropolitan areas is the availability of public access charging infrastructure. Charging PEVs in areas with limited off-street parking, where charging equipment is typically installed, becomes a perceptual and logistical barrier for prospective PEV drivers who primarily park on-street. The targeted deployment of curbside Level 2 charging stations is one of the most cost-effective and catalytic ways that local government can support a shift toward PEVs in cities. Through original research, analysis, and case studies, this report seeks to define the potential for curbside Level 2 charging station implementation in New York City and to establish guidelines to ensure success. The report and its accompanying guidebook are intended to be a resource for New York City agencies as well as local governments looking to pilot curbside charging.

Telematics and Data Science: Informing Energy-Efficient Mobility Daley, R.; Helm, M. 8/6/2019 Reports

Sawatch Group, LLC, Denver, Colorado

Fleets exploring the possibility of adding plug-in electric vehicles (PEVs) seek an efficient, data-driven means to estimate both expenditures for vehicle and charging infrastructure and the appropriate placement of them to help ensure the cost-effective adoption of these technologies. Exploring data collection and analytic methodologies across different telematics providers offers the opportunity to better understand the strengths, weaknesses, and possibilities for employing different methods of data collection, including smartphone-based telematics and more traditional telematics with hardware installed on a vehicle’s onboard diagnostics port. This report presents results of five pilot programs that collected data from the operation of conventional light-duty fleet vehicles to generate estimates for transitioning these fleet vehicles to PEVs, implementing charging infrastructure, and establishing management practices to maximize the benefits of these new fleet technologies.

Electric Vehicle Charging Station Permitting Guidebook Eckerle, T.; Brazil Vacin, G. 7/16/2019 Books & Chapters

California Governor’s Office of Business and Economic Development, Sacramento, California

This guidebook is comprised of eight parts and is intended to help navigate station developers and local jurisdictions through the infrastructure development process from selecting sites for electric vehicle supply equipment (EVSE) through the permitting and construction processes. It reflects the latest best practices collected from stations developers and local jurisdictions with experience in developing and approving EVSE. It also provides clarity and tips on implementing statewide permitting streamlining requirements in California.

Get Your Building Ready for Electric Vehicles 7/3/2019 Brochures & Fact Sheets

Environmental Protection Agency, Washington, D.C.

By the year 2030, there may be as many as 19 million plug-in electric vehicles (PEVs) on the road in the United States, representing a market share of 10%. With effective PEV charging implementation, commercial building owners and managers can add value to properties, increase the convenience and affordability of driving PEVs for tenants and employees, and show leadership in adopting advanced, sustainable technologies. This fact sheet provides recommendations for building owners to make commercial buildings and new construction PEV-ready.

Summary of Best Practices in Electric Vehicle Ordinances Cooke, C.; Ross, B. 6/18/2019 Reports

Great Plains Institute, Minneapolis, Minnesota

This document is a summary guide to electric vehicle (EV) and electric vehicle supply equipment (EVSE) ordinances in the United States. The guide is sorted into best practice categories and provides a summary of typical provisions used by cities for each category. Each category includes a table with key points and text examples from actual ordinances, as well as recommendations from model codes for that topic, drawn from one of several model ordinances or ordinance guidance documents that have been developed to inform cities on developing EV-ready zoning standards. This summary is provided as a reference to cities seeking to develop EV zoning standards or development regulations.

The Surge of Electric Vehicles in United States Cities 6/10/2019 Reports

International Council on Clean Transportation, Washington, D.C.

This briefing paper analyzes 2018 plug-in electric vehicle (PEV) uptake in the United States and the policy factors that are driving it. The paper catalogs 43 unique city, state, and utility PEV promotion actions and their implementation across the 50 most populous U.S. metropolitan areas in 2018. The work identifies best practices across various state and local policies, public and workplace charging infrastructure, consumer incentives, model availability, and the share of new vehicles that are PEV.

Fuel Diversification to Improve Transportation Resilience: A Backgrounder Johnson, C. 6/6/2019 Presentations

National Renewable Energy Laboratory, Golden, Colorado

Transportation fuel (like most other necessities) can be made more resilient to natural disasters by improving the redundancy of its supply, increasing local storage, strategizing access to that storage, expediting resupply, and improving the efficiency at which that fuel is used for transportation purposes. Alternative fuels such as natural gas, propane, and electricity have very different sources and distribution, and therefore add resilience to the fuel supply through redundancy. However, it is important to examine the inter-dependencies of these fuels and timing that may present vulnerabilities during a hurricane. This workshop presented a variety of perspectives to assist in making Tampa Bay's transportation system more resilient through the strategic use of alternative fuels.

Vehicle Electrification: Federal and State Issues Affecting Deployment Canis. B.; Clark, C.E.; Sherlock, M.F. 6/3/2019 Reports

Congressional Research Service, Washington, D.C.

Motor vehicle electrification has emerged in the past decade as a potentially viable alternative to internal combustion engines. Although only a small proportion of the current motor vehicle fleet is electrified, interest in passenger vehicle electrification has accelerated in several major industrial countries, including the United States, parts of Europe, and China. Despite advances in technology, plug-in electric vehicles (PEVs) continue to be significantly more expensive than similarly sized vehicles with internal combustion engines. For this reason, governments in many countries have adopted policies to promote development and sales of PEVs. This report discusses federal and state government policies in the United States to support electrification of light vehicles and transit buses, as well as proposals to reduce or eliminate such support.

Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jul. 2018 through Dec. 2018 Eudy, L.; Jeffers, M. 5/28/2019 Presentations

National Renewable Energy Laboratory, Golden, Colorado

This report summarizes results of a battery electric bus (BEB) evaluation at Foothill Transit, located in the San Gabriel Valley area of Los Angeles. Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The focus of this evaluation is to compare the performance and the operating costs of the BEBs to that of conventional technology buses and to track progress over time. Previous reports documented results from April 2014 through June 2018. This report extends the data analysis through the end of 2018. The data period focus of this report is July 2018-December 2018. NREL plans to publish progress reports on the Foothill Transit fleet every 6 months through 2020.

Impact of Time-Varying Passenger Loading on Conventional and Electrified Transit Bus Energy Consumption Liu; L.; Kotz, A.; Salapaka, A.; Miller, E.; Northrop, W.F. 5/24/2019 Journal Articles & Abstracts

Department of Mechanical Engineering, University of Minnesota, Minneapolis, Minnesota; National Renewable Energy Laboratory, Golden, Colorado

Transit bus passenger loading changes significantly over the course of a workday. Therefore, time-varying vehicle mass as a result of passenger load becomes an important factor in instantaneous energy consumption. Battery-powered electric transit buses have restricted range and longer 'fueling' time compared with conventional diesel-powered buses; thus, it is critical to know how much energy they require. Our previous work has shown that instantaneous transit bus mass can be obtained by measuring the pressure in the vehicle's airbag suspension system. This paper leverages this novel technique to determine the impact of time-varying mass on energy consumption. Sixty-five days of velocity and mass data were collected from in-use transit buses operating on routes in the Twin Cities, MN metropolitan area. The simulation tool Future Automotive Systems Technology Simulator was modified to allow both velocity and mass as time-dependent inputs. This tool was then used to model an electrified and conventional bus on the same routes and determine the energy use of each bus. Results showed that the kinetic intensity varied from 0.27 to 4.69 mi-1 and passenger loading ranged from 2 to 21 passengers. Simulation results showed that energy consumption for both buses increased with increasing vehicle mass. The simulation also indicated that passenger loading has a greater impact on energy consumption for conventional buses than for electric buses owing to the electric bus's ability to recapture energy. This work shows that measuring and analyzing real-time passenger loading is advantageous for determining the energy used by electric and conventional diesel buses.

Clean Cities Coalitions 2017 Activity Report Johnson, C.; Singer, M. 5/14/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy's (DOE's) national network of Clean Cities Coalitions advance the nation's economic, environmental, and energy security by supporting local actions to promote the use of domestic fuels within transportation. The nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, bring together stakeholders in the public and private sectors to use alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. To ensure success, coalitions leverage a robust set of expert resources and tools provided by national laboratories and DOE. Each year, Clean Cities coordinators submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online tool that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels; use of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), and hybrid electric vehicles (HEVs); IR initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the submitted data to determine how broadly energy use in the U.S. has shifted due to coalition activities, which are summarized in this report.

Utilities and Electric Vehicles: The Case for Managed Charging 5/9/2019 Reports

Smart Electric Power Alliance

Electric vehicles (EVs) are quickly becoming one of the largest flexible loads on the grid in certain parts of the United States. While most industry analysts see EVs as a boon for utilities, load management risks could be an issue. Managed charging allows a utility or third-party to remotely control vehicle charging by turning it up, down, or even off to better correspond to the needs of the grid, much like traditional demand response programs. This research report provides a wide-lens overview of the managed charging ecosystem, including examples of utility programs, a list of vehicle-grid integration and connected-car platform providers, a list of compatible electric vehicle supply equipment, and examples of automotive industry activities.

Notes:

This copyrighted publication can be accessed through Smart Electric Power Alliance's website.

Electricity Rates for Electric Vehicle Direct Current Fast Charging in the United States Muratori, M.; Kontou, E.; Eichman, J. 4/26/2019 Journal Articles & Abstracts

National Renewable Energy Laboratory, Golden, Colorado

This report assesses the electricity cost for different scenarios of direct current (DC) fast charger station size and use, based on over 7,500 commercial and industrial electricity rates available for 2017 across the United States. Results show that the cost of electricity for DC fast chargers varies dramatically, ranging from less than $0.10 to over $2 per kilowatt-hour, depending on station design and high uncertainty in use. It explores the cost drivers for low- and high-utilization stations.

Notes: This Renewable and Sustainable Energy Reviews article (Vol. 113 (October 2019): pp. 415-426) is copyrighted by Elsevier B.V. and only available by accessing it through Science Direct.

Feasibility Analysis of Taxi Fleet Electrification using 4.9 Million Miles of Real-World Driving Data; SAE Paper No. 2019-01-0392 Moniot, M.; Rames, C.; Burrell, E. 4/2/2019 Conference Papers & Proceedings

National Renewable Energy Laboratory, Golden, Colorado

Ride hailing activity is rapidly increasing, largely due to the growth of transportation network companies such as Uber and Lyft. However, traditional taxi companies continue to represent an important mobility option for travelers. Columbus Yellow Cab, a taxi company in Columbus, Ohio, offers traditional line-of-sight hailing as well as digital hailing through a mobile app. Data from Columbus Yellow Cab was provided to the National Renewable Energy Laboratory to analyze the potential for taxi electrification. Columbus Yellow Cab data contained information describing both global positioning system trajectories and taxi meter information. The data spanned a period of 13 months, containing approximately 70 million global system positioning system points, 840 thousand trips, and 170 unique vehicles. A variety of scenarios were evaluated using Columbus Yellow Cab data and the Electric Vehicle Infrastructure Projection Tool (EVI-Pro) to understand challenges and opportunities associated with operating an electrified taxi fleet. Two main factors-access to home charging and vehicle specifications-are shown to be major variables affecting successful electric fleet operation. The analysis indicates that 95.7% of taxi travel days can be successfully completed by a 250-mile-range electric vehicle assuming access to overnight and public charging infrastructure. However, when no overnight access is available to fleet vehicles, only 39.9% of taxi travel days are possible with 250-mile range electric vehicles. An additional scenario, reducing the vehicle range from 250 miles to 100 miles (while controlling for infrastructure access and permitting overnight charging) resulted in only 34.4% of taxi travel days being completed.

Update on electric vehicle costs in the United States through 2030 Lutsey, N.; Nicholas, M. 4/1/2019 Reports

International Council on Clean Transportation, Washington, D.C.

This working paper assesses battery electric vehicle (EV) costs from 2020 through 2030, collecting the best battery pack and EV component cost data available through 2018. The assessment also analyzes the anticipated timing for price parity for representative EVs, crossovers, and sport utility vehicles compared to their conventional gasoline counterparts in the U.S. light-duty vehicle market.

Notes:

This copyrighted publication can be downloaded from the International Council on clean Transportation website.

Technology Solutions to Mitigate Electricity Cost for Electric Vehicle DC Fast Charging Muratori, M.; Elgqvist, E.; Cutler, D.; Eichman, J.; Salisbury, S.; Fuller, Z.; Smart, J. 3/16/2019 Journal Articles & Abstracts

National Renewable Energy Laboratory, Golden, Colorado; Idaho National Laboratory, Idaho Falls, Idaho

Widespread adoption of alternative fuel vehicles is being hindered by high vehicle costs and refueling or range limitations. For plug-in electric vehicles, direct current (DC) fast charging is proposed as a solution to support long-distance travel and relieve range anxiety. However, DC fast charging has also been shown to be potentially more expensive compared to residential or workplace charging. In particular, electricity demand charges can significantly impact electricity cost for fast charging applications. This study explores technological solutions that can help reduce the electricity cost for DC fast charging.

Notes:

This copyrighted publication can be downloaded from the Elsevier ScienceDirect website.

On-Road Fuel Cell Electric Vehicles Evaluation: Overview Kurtz, J.; Sprik, S.; Saur. G.; Onorato, S. 3/14/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report presents an overview of an evaluation of on-road fuel cell electric vehicles (FCEVs) by the National Renewable Energy Laboratory (NREL). The project addressed the need for current, on-road FCEV data and sought to validate improved performance and longer durability from comprehensive sets of early FCEVs, including early market vehicles. This report provides an overview of the evaluation project and partners, describes NREL's evaluation approach, and presents a summary of the results. Detailed results for durability, fuel economy, deployment and driving behavior, and specifications are published in separate reports.

Fuel Cell Electric Vehicle Driving and Fueling Behavior Kurtz, J.; Sprik, S.; Saur, G.; Onorato, S. 3/6/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

The objectives of this project are to validate hydrogen fuel cell electric vehicles in real-world settings and to identify the current status and evolution of the technology. The analysis objectively assesses progress toward targets and market needs defined by the U.S. Department of Energy and stakeholders, provides feedback to hydrogen research and development, and publishes results for key stakeholder use and investment decisions. Fiscal year 2018 objectives focused on analysis and reporting of fuel cell electric vehicle driving range, fuel economy, drive and fill behaviors, durability, fill performance, and fuel cell performance. This report specifically addresses the topics of driving range, fuel economy, drive and fill behaviors, and fill performance.

Amping Up: Charging Infrastructure for Electric Trucks 3/1/2019 Reports

North American Council for Freight Efficiency

The report covers charging considerations for commercial electric vehicles (EVs) currently in production for freight delivery. Because most commercial EVs are currently being deployed in the goods movement sector, specifically the medium-duty urban delivery and drayage sectors, much of the best practices and lessons learned come from these applications. Based on lessons learned thus far, this report provides a roadmap for medium- and heavy-duty fleets.

Notes:

This copyrighted publication can be accessed through North American Council for Freight Efficiency's website.

Meeting 2025 Zero Emission Vehicle Goals: An Assessment of Electric Vehicle Charging Infrastructure in Maryland Moniot, M.; Rames, C.; Wood, E. 2/20/2019 Reports

National Renewable Energy Laboratory, Golden, Colorado

The National Renewable Energy Laboratory (NREL) has been enlisted to conduct a statewide assessment of the electric vehicle charging infrastructure requirements for Maryland to meet its goal of supporting 300,000 zero emission vehicles by 2025. NREL's Electric Vehicle Infrastructure Projection Tool (EVI-Pro) was used to generate scenarios of statewide charging infrastructure to support consumer plug-in electric vehicle (PEV) adoption based on travel patterns provided by INRIX (a commercial mapping/traffic company) that are used to characterize regional travel in Maryland and to anticipate future demand for PEV charging. Results indicate that significant expansion of Maryland's electric vehicle charging infrastructure will be required to support the state's PEV goal for 2025. Analysis shows that a fleet of 300,000 PEVs will require 17,400 workplace Level 2 plugs, 9,300 public Level 2 plugs, and 1,000 fast charge plugs. These estimates assume that future PEVs will be driven in a manner consistent with present day gasoline vehicles and that most charging will happen at residential locations. A sensitivity study explores edge cases pertaining to several assumptions, highlighting factors that heavily influence the projected infrastructure requirements. Variations in the makeup of the PEV fleet, evolving consumer charging preferences, and availability of residential charging are all shown to influence 2025 infrastructure requirements.

Assessing Ride-Hailing Company Commitments to Electrification Slowik, P.; Fedirko, L.; Lutsey, N. 2/7/2019 Reports

International Council on Clean Transportation, Washington D.C.; ClimateWorks Foundation, Denver, Colorado

This briefing assesses electric vehicle adoption among five of the world’s largest ride-hailing companies. It discusses company-specific electric vehicle adoption, examines plans for future growth, and catalogs the unique actions that companies are exploring to promote electric ride-hailing on their platforms.

Next-Generation Grid Communications for Residential Plug-in Electric Vehicles Patadia, S.; Rodine, C. 1/25/2019 Reports

ChargePoint, Campbell, California; California Energy Commission, Sacramento, California

As residential plug-in electric vehicle (PEV) charging loads increase, they represent significant contributions to local distribution circuits, and if not managed, can have negative effects on local electricity grid stability. For residential PEV participation to be effective for grid stabilization, it is key to have detailed data collection, coordination at charging stations owned by different parties, sensitivity to each driver’s needs and preferences, and real-time understanding of each vehicle’s state of charge or charge necessary. This pilot project tested the technology ecosystems required to handle adding significant PEV load to the grid.

Quantifying the Electric Vehicle Charging Infrastructure Gap Across U.S. Markets Nicholas; M.; Hall, D.; Lutsey, N. 1/23/2019 Reports

International Council on Clean Transportation, Washington, D.C.

The electrification of the United States vehicle market continues, with the most growth occurring in markets where barriers are addressed through policy, charging infrastructure, and consumer incentives. This report quantifies the gap in charging infrastructure from what was deployed through 2017 to what is needed to power more than 3 million expected electric vehicles by 2025, consistent with automaker, policy, and underlying market trends. Based on the expected growth across the 100 most populous U.S. metropolitan areas, this report estimates the amount of charging of various types that will be needed to power these vehicles.

When Does Electrifying Shared Mobility Make Economic Sense? Pavlenko, N.; Slowik, P.; Lutsey, N. 1/14/2019 Reports

International Council on Clean Transportation, Washington, D.C.

Over the past several years, the reach and use of shared vehicles has expanded significantly throughout the United States, particularly in large metropolitan areas. Use of ride-hailing fleets, often referred to as transportation network companies, is especially on the rise. The deployment of plug-electric vehicles (PEVs) has accelerated in many of the same urban areas experiencing growth in shared mobility. This report assesses the timing of cost-effectively electrifying shared mobility fleets in U.S. cities, with a focus on ride-hailing. The study includes a total cost of operation metric for conventional vehicles, hybrid electric vehicles, and PEVs in eight U.S. cities to assess changing purchase and operating costs through 2025.

Notes:

This copyrighted publication can be accessed on The International Council on Clean Transportation's website.

Increasing Electric Vehicle Fast Charging Deployment: Electricity Rate Design and Site Host Options 1/1/2019 Reports

The Brattle Group, Boston, Massachusetts for Edison Electric Institute, Washington, D.C.

Plug-in electric vehicles (PEVs) provide customer, environmental, energy grid, and national security benefits. However, limited access to charging infrastructure remains a major hurdle to more rapid PEV adoption. While most PEV charging occurs at home, additional publicly located charging stations – both Level 2 and direct current (DC) fast charging stations – are needed. This paper presents a range of options to increase the deployment of DC fast charging infrastructure, either through rate design or through implementation by the site host. Given the early stages of DC fast charging infrastructure deployment, learning-by-doing is an important option to consider.

Notes:

This copyrighted publication can be accessed through the Brattle Group's website.

Model Year 2020 Fuel Economy Guide: EPA Fuel Economy Estimates 12/19/2018 Reports

U. S. Department of Energy, Washington, D.C.; U.S. Environmental Protection Agency, Washington, D.C.

The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

Model Year 2019 Fuel Economy Guide: EPA Fuel Economy Estimates 12/19/2018 Reports

U. S. Department of Energy, Washington, D.C.; U.S. Environmental Protection Agency, Washington, D.C.

The Fuel Economy Guide is published by the U.S. Department of Energy as an aid to consumers considering the purchase of a new vehicle. The Guide lists estimates of miles per gallon (mpg) for each vehicle available for the new model year. These estimates are provided by the U.S. Environmental Protection Agency in compliance with Federal Law. By using this Guide, consumers can estimate the average yearly fuel cost for any vehicle. The Guide is intended to help consumers compare the fuel economy of similarly sized cars, light duty trucks and special purpose vehicles.

Zero-Emission Bus Evaluation Results: County Connection Battery Electric Buses Eudy, L.; Jeffers, M. 12/10/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Transportation's (DOT's) Federal Transit Administration (FTA) supports the research, development, and demonstration of low- and zero-emission technology for transit buses. FTA funds research projects with a goal of facilitating commercialization of advanced technologies for transit buses that will increase efficiency and improve transit operations. DOT's Research, Development, and Technology Office (OST-R) also has an interest in zero-emission bus (ZEB) technology deployment and commercialization. OST-R is coordinating and collaborating with FTA on the evaluation process and results by providing funding to cover additional evaluations. FTA and OST-R are collaborating with the U.S. Department of Energy (DOE) and DOE's National Renewable Energy Laboratory (NREL) to conduct in-service evaluations of advanced technology buses developed under its programs. NREL uses a standard evaluation protocol for evaluating the advanced technologies deployed under the FTA programs. FTA seeks to provide results from new technologies being adopted by transit agencies. The eight evaluations selected to date include battery electric buses (BEBs) and fuel cell electric buses (FCEBs) from different manufacturers operating in fleets located in both cold and hot climates. The purpose of this report is to present the results from Central Contra Costa Transit Authority (County Connection) deployment of four BEBs in Concord, California. NREL's evaluation of the BEBs at County Connection was funded by OST-R.

Clean Cities Coalitions 2016 Activity Report Johnson, C.; Singer, M. 10/10/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

The U.S. Department of Energy's (DOE's) national network of Clean Cities Coalitions advance the nation's economic, environmental, and energy security by supporting local actions to promote the use of domestic fuels within transportation. The nearly 100 Clean Cities coalitions, whose territory covers 80% of the U.S. population, bring together stakeholders in the public and private sectors to use alternative and renewable fuels, idle-reduction (IR) measures, fuel economy improvements, and new transportation technologies as they emerge. To ensure success, coalitions leverage a robust set of expert resources and tools provided by national laboratories and DOE. Each year, Clean Cities coordinators submit annual reports of their activities and accomplishments for the previous calendar year. Data and information are submitted via an online tool that is maintained as part of the Alternative Fuels Data Center (AFDC) at the National Renewable Energy Laboratory (NREL). Coordinators submit a range of data that characterize the membership, funding, projects, and activities of their coalitions. They also submit data about sales of alternative fuels; use of alternative fuel vehicles (AFVs), plug-in electric vehicles (PEVs), and hybrid electric vehicles (HEVs); IR initiatives; fuel economy improvement activities; and programs to reduce vehicle miles traveled (VMT). NREL analyzes the submitted data to determine how broadly energy use in the U.S. has shifted due to coalition activities, which are summarized in this report.

Foothill Transit Agency Battery Electric Bus Progress Report, Data Period Focus: Jan. 2018 through Jun. 2018 Eudy, L.; Jeffers, M. 10/8/2018 Presentations

National Renewable Energy Laboratory, Golden, Colorado

This report summarizes results of a battery electric bus (BEB) evaluation at Foothill Transit, located in the San Gabriel Valley area of Los Angeles. Foothill Transit is collaborating with the California Air Resources Board and the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to evaluate the buses in revenue service. The focus of this evaluation is to compare the performance and the operating costs of the BEBs to that of conventional technology buses and to track progress over time. Previous reports documented results from April 2014 through December 2017. This report extends the data analysis through June 2018. NREL plans to publish progress reports on the Foothill Transit fleet every six months through 2020. performance and the operating costs of the BEBs to that of conventional technology buses and to track progress over time. Previous reports documented results from April 2014 through December 2017. This report extends the data analysis through June 2018. NREL plans to publish progress reports on the Foothill Transit fleet every six months through 2020.

Value to the Grid from Managed Charging Based on California's High Renewables Study Zhang, J.; Jorgenson, J.; Markel. T.; Walkowicz, K. 10/1/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

Managed charging of plug-in electric vehicle (PEV) loads has the potential to use renewable energy more effectively, shave peak demand, and fill demand valleys while serving transportation needs. However, to date the potential value to the grid from managed charging has not been fully quantified. This paper quantifies value to the grid from managed charging by using three levels of managed loads for 13 terawatt-hours of annual load from three million PEVs in a 2030 California grid scenario.

Notes: This IEEE Transactions on Power Systems article (Vol. 34, Issue 2, (March 2019): pp. 831-840) is copyrighted by IEEE and can be accessed through IEEE Xplore.

Policies that Impact the Acceleration of Electric Vehicle Adoption Kettles, C. 9/26/2018 Reports

Electric Vehicle Transportation Center, Florida Solar Energy Center, Cocoa, Florida

To better understand the influence of policy initiatives that relate to electric vehicles (EVs) have on accelerated deployment, this project focused on a number of successful public and private initiatives and policies designed to encourage the adoption of EVs and related infrastructure. This report highlights programs that have influenced adoption, provides a critique of best practices, and includes references to databases EV policy initiatives.

The Zero Emission Vehicle Regulation 8/24/2018 Brochures & Fact Sheets

California Air Resources Board, Sacramento, California

This fact sheet provides an overview of California’s zero-emission vehicle (ZEV) regulation, which is designed to achieve the state’s long-term emission reduction goals by requiring manufacturers to offer for sale specific numbers of the very cleanest cars available. The ZEV regulation has been adopted by other states.

Demonstrating Plug-in Electric Vehicles Smart Charging and Storage Supporting the Grid Gadh, R. 8/23/2018 Reports

California Energy Commission, Sacramento, California

This report presents the development and deployment of a PEV charging system consisting of smart charging, vehicle-to-grid, vehicle-to-building, demand response, and power quality sustainable capabilities. The goal of this system is to achieve grid resiliency and economic benefit to PEV fleet owners. As a result of the project, the research team from the University of California, Los Angeles validated the viability of bi-directional electric vehicle infrastructure, as well as the associated air quality improvements and financial benefits from the system.

Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States Mai, T.; Jadun, P.; Logan, J.; McMillan, C.; Muratori, M.; Steinberg, D.; Vimmerstedt, L.; Jones, R.; Haley, B.; Nelson, B. 8/8/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

This report is the second publication in a series of Electrification Futures Study publications. The report presents scenarios of electric end-use technology adoption and resulting electricity consumption in the United States. The scenarios reflect a wide range of electricity demand growth through 2050 that result from various electric technology adoption and efficiency projections in the transportation, residential and commercial buildings, and industrial sectors.

Workplace Charge Management with Aggregated Building Loads Jun, M.; Meintz, A. 8/1/2018 Conference Papers & Proceedings

National Renewable Energy Laboratory, Golden, Colorado

This paper was presented at the 2018 IEEE Transportation Electrification Conference and Expo (ITEC), 13-15 June 2018, Long Beach, California. It describes a workplace charge management system developed to control plug-in electric vehicle charging stations based on aggregated building loads. A system to collect information from drivers was also developed for better charge management performance since the present AC charging station standard does not provide battery state of charge information. First, simulations with uncontrolled charging data were conducted to investigate several scenarios and control methods, and then one method with the most power curtailment during peak load was selected for verification tests. This paper illustrates load reduction test results for 36 charging stations and real-time campus net load data.

Notes:

This copyrighted publication can be viewed and purchased on the Institute of Electrical and Electronics Engineers's website.

Future Automotive Systems Technology Simulator (FASTSim) Validation Report Gonder, J.; Brooker, A.; Wood, E.; Moniot, M. 7/27/2018 Reports

National Renewable Energy Laboratory, Golden, Colorado

The National Renewable Energy Laboratory's Future Automotive Systems Technology Simulator (FASTSim) captures the most important factors influencing vehicle power demands and performs large-scale fuel efficiency calculations very quickly. These features make FASTSim well suited to evaluate a representative distribution of real-world fuel efficiency over a large quantity of in-use driving profiles, which have become increasingly available in recent years owing to incorporation of global positioning system data collection into various travel surveys and studies. In addition, by being open source, computationally lightweight, freely available, and free from expensive third-party software requirements, analyses conducted using FASTSim may be easily replicated and critiqued in an open forum. This is highly desirable for situations in which technical experts seek to reach consensus over questions about what vehicle development plans or public interest strategies could maximize fuel savings and minimize adverse environmental impacts with an evolving vehicle fleet. While FASTSim continues to be refined and improved on an on-going basis, this report compiles available runs using versions of the tool from the past few years to provide illustrative comparison of the model results against measured data.

2018 Annual Evaluation of Hydrogen Fuel Cell Electric Vehicle Deployment and Hydrogen Fuel Station Network Development 7/23/2018 Reports

California Air Resources Board, Sacramento, California

California's Assembly Bill 8 requires the California Air Resources Board (ARB) to assess the size of the current and future Fuel Cell Electric Vehicle fleet annually, based on vehicle registrations with the Department of Motor Vehicles, auto manufacturer responses to ARB surveys of projected future sales, and current and future hydrogen fuel station locations and capacity. This information informs the state's decisions for future funding of hydrogen fuel stations, including the number and location of stations as well as minimum technical requirements for those stations.