Butanol, a 4-carbon alcohol (butyl alcohol), is produced from the same feedstocks as ethanol, including corn grain and other biomass. The term biobutanol refers to butanol made from biomass feedstocks. The benefits of biobutanol, when compared with ethanol, are that biobutanol is immiscible in water, has a higher energy content, and has a lower Reid vapor pressure. Under the Renewable Fuel Standard, corn grain butanol meets the renewable fuel 20% greenhouse gas emission reduction threshold.

While there are four isomers of butanol, the most active commercialization work centers on isobutanol for blending with gasoline. Two Clean Air Act provisions allow for blending of up to 12.5% biobutanol by volume with gasoline. Additionally, under a waiver granted by the U.S. Environmental Protection Agency (EPA), a 16% biobutanol blend is a legal fuel equivalent to E10 (10% ethanol, 90% gasoline). Butanol has an ASTM D7862 fuel quality standard for blends up to 12.5% with gasoline. The two primary companies manufacturing biobutanol are Butamax and Gevo.

Both companies have registered for on-highway vehicle sales with EPA. As of June 2018, the EPA approved up to 16% biobutanol blends. It is important to ensure that biobutanol blended with gasoline does not result in an oxygen content exceeding the EPA limit of 3.7%. The EPA-approved 16% biobutanol level was determined based on the assumption that no other oxygenates (e.g., ethanol) are included in the fuel blend. Biobutanol blends are currently sold in select parts of the United States.

Oak Ridge National Laboratory has researched the compatibility of fueling equipment materials with biobutanol and found that equipment compatible with ethanol blends is also compatible with biobutanol. Underwriters Laboratories announced in 2013 that equipment certified under testing subject 87A (for blends above E10) could also retain certification if used with biobutanol. It is anticipated that biobutanol would be distributed by tanker truck and rail, with the potential for transportation in pipelines upon research demonstrating its safety.


The first biobutanol plants were retrofits of existing corn ethanol plants. The fuel is produced through fermentation of corn feedstock and the process is nearly identical to fuel ethanol production from corn. Biobutanol companies produce a range of high-value products, including transportation fuel. Primary coproducts of biobutanol plants may include solvents/coatings, plastics, and fibers. Production of these coproducts helps biobutanol companies improve economic performance through diversification of product offerings. A challenge for biobutanol is that more ethanol than biobutanol can be produced from a bushel of corn.

Gevo began producing a cellulosic biobutanol that is converted to jet fuel, which meets the fuel quality specification D7566 for use by commercial airlines (Voegele 2016b). Butamax is retrofitting a corn ethanol plant to demonstrate its technology.

The near-term outlook for biobutanol production is limited, as the market has been small and intermittent since 2012. EPA Renewable Identification Number (RIN) data reports show that approximately 12,000 gallons entered the commercial market in 2013, none in 2014 and 2015, and more than 125,000 gallons in 2016. Furthermore, no biobutanol entered the market in 2017 or 2018.


Biobutanol is an alternative to conventional transportation fuels. The benefits of biobutanol include:

  • Higher energy content—Biobutanol's energy content is relatively high among gasoline alternatives. However, biobutanol's energy density is 10%–20% lower than gasoline's energy density.

  • Lower Reid vapor pressure—When compared with ethanol, biobutanol has a lower vapor pressure, which means lower volatility and evaporative emissions.

  • Increased energy security—Biobutanol can be produced domestically from a variety of feedstocks, while creating U.S. jobs.

  • Fewer emissions—Fewer emissions are generated with the use of biobutanol compared with petroleum fuels. Carbon dioxide captured by growing feedstocks reduces overall greenhouse gas emissions by balancing carbon dioxide released from burning biobutanol.

  • More transport options—Biobutanol is immiscible with water, meaning that it may be able to be transported in pipelines to reduce transport costs.

Research and Development

The U.S. Department of Agriculture's Agricultural Research Service studied various aspects of biobutanol production:

The U.S. Department of Energy (DOE) and the EPA are funding biobutanol research and development as part of their Small Business Technology Transfer and Small Business Innovation Research programs.

Companies involved in biobutanol production include Butamax (a joint venture between DuPont and BP) and Gevo.

More Information

Learn more about biobutanol from the links below. The Alternative Fuels Data Center (AFDC) and DOE do not necessarily recommend or endorse these companies (see disclaimer).

The AFDC also provides a publications search for more information.