Loading...
Federal Workplace Charging Program Guide
11/2/2020
The Fixing America’s Surface Transportation (FAST) Act authorizes the installation, operation, and maintenance of electric vehicle (EV) charging equipment for the purpose of charging privately owned vehicles (POVs) under the custody or control of the General Services Administration or other federal agencies. It requires the collection of fees to recover the costs of installing, operating, and maintaining this equipment and imposes reporting requirements. This model program guide reviews those requirements and describes when and how fees may be required to cover costs of electricity, network costs, EV charging equipment, and installations in various scenarios. This model program guide is designed to support federal agencies developing and refining workplace charging programs for employee POVs.
Electrifying Freight: Pathways to Accelerating the Transition
11/1/2020
The U.S. economy is heavily dependent on the functionality of our freight and goods transportation services. Road freight transportation in the United States is projected to grow steadily in the coming decades, and electric vehicles (EVs) are emerging as a clean and cost-effective alternative. This report outlines the benefits of electric trucks, explains the major barriers impeding their production, sales, and deployment, and establishes the next steps that manufacturers, policymakers, fleet operators, and other stakeholders should take to facilitate and accelerate freight electrification.
Authors: Buholtz, T.; Burger, A.; Gander, S.; Nelson, B.; Prochazka, B.; Swalnick, N
Summary Report on Electric Vehicles at Scale and the U.S. Electric Power System
11/1/2020
Plug-in electric vehicles (PEVs) can meet U.S. personal transportation needs using domestic energy resources while at the same time offering carbon emissions benefits. However, wide scale light-duty PEV adoption will necessitate assessment of and possibly modification to the U.S. electric power generation and distribution systems. This report gauges the sufficiency of both energy generation and generation capacity in the U.S. electric power system to accommodate the growing fleet of light duty PEVs.
Fleet-Wide Electrification Impacts Assessment for the Valley Transportation Authority
11/1/2020
This report explores the long-term electrification opportunities for the Valley Transit Authority’s (VTA) transit bus fleet. It also explores the potential for transit bus electrification at VTA as well as the economic impacts of partial and complete electrification. Further, the report includes the optimal charging, operation and lowest capital and operating cost solution to achieve different levels of electrification to meet VTA’s existing routes.
Authors: Eichman, J.; Kotz, A.; Miller, E.; Kelly, K.; Ficenec, K.
Expanding Equitable Access to EV Mobility: Examples of Innovative Policies and Programs
9/21/2020
This document describes examples of how state governments and their partners across the United States are working on improving equitable access to light-duty plug-in electric vehicle mobility in low- and moderate-income (LMI) communities. In addition, this document covers the importance of early engagement for assessing the mobility needs and gaps in LMI communities, identifying strategic approaches to expanding equitable mobility, and finding local leaders.
Hydrogen Station Permitting Guidebook
9/1/2020
This guidebook is comprised of six parts and is intended to help station developers and local jurisdictions navigate and streamline the infrastructure development process. It reflects the latest best practices collected from stations developers and local jurisdictions with experience in the hydrogen stations development process.
Authors: Brazil Vacin, G.; Eckerle, T.; Kashuba, M.
Update on Electric Vehicle Adoption Across U.S. Cities
8/31/2020
This briefing builds upon the International Council on Clean Transportation’s annual U.S. plug-in electric vehicle (PEV) market analysis of state, local, and utility actions to promote PEVs. It assesses relationships between PEV uptake and various underlying factors including incentives, charging infrastructure, model availability, access to high-occupancy vehicle lanes, and regional policy actions. The analytical focus is primarily on the 50 most populous U.S. metropolitan areas, which collectively accounted for 55% of the nation’s population.
Authors: Bui A.; Slowik, P.; Lutsey. N.
Electric Vehicle Charging Infrastructure Trends from the Alternative Fueling Station Locator: First Quarter 2020
8/28/2020
The U.S. Department of Energy’s Alternative Fueling Station Locator contains information on public and private non-residential alternative fueling stations in the United States and Canada and currently tracks ethanol (E85), biodiesel, compressed natural gas, electric vehicle (EV) charging, hydrogen, liquefied natural gas, and propane stations. Of these fuels, EV charging continues to experience rapidly changing technology and growing infrastructure. This report provides a snapshot of the state of EV charging infrastructure in the United States in the first calendar quarter of 2020 (Q1). Using data from the Station Locator, this report breaks down the growth of public and private charging infrastructure by charging level, network, and location. Additionally, this report measures the current state of charging infrastructure compared with the amount projected to meet charging demand by 2030. This information is intended to help transportation planners, policymakers, researchers, infrastructure developers, and others understand the rapidly changing landscape for EV charging.
Authors: Brown, A.; Lommele, S.; Schayowitz, A.; Klotz, E.
SMART Mobility Decision Science Capstone Report
8/5/2020
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.
This report summarizes the work of the Mobility Decision Science Pillar. The Mobility Decision Science Pillar sought to fill gaps in existing knowledge about the human role in the mobility system including travel decision-making and technology adoption in the context of future mobility. The objective was to study how underlying preferences, needs, and contextual factors might constrain or hasten future transportation system scenarios.
Authors: Spurlock, C.; Gopal, A.; Auld, J.; Leiby, P.; Sheppard, C.; Wenzel, T.; Belal, S.; Duvall, A.; Enam, A.; Fujita, S.; Henao, A.; Jin, L.; Kontou, E.; Lazar, A.; Needell, Z.; Rames, C.; Rashidi, T.; Sears, T.; Sim, A.; Stinson, M.; Taylor, M.; Todd-Blick, A.; Verbas, O.; Walker, V.; Ward, J.; Wong-Parodi, G.; Wu, K.; Yang, H.
SMART Mobility Multi-Modal Freight Capstone Report
8/3/2020
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.
This report summarizes the work of the Multi-Modal Freight Pillar. The Multi Modal Freight Pillar’s objective is to assess the effectiveness of emerging freight movement technologies and understand the impacts of the growing trends in consumer spending and e-commerce on parcel movement considering mobility, energy, and productivity.
Authors: Zhao, Y.; Birky, A.; Moore, A.; Walker, V.; Stinson, M.; Smith, D.; Jones, P.
High-Potential Regions for Electric Truck Deployments
8/1/2020
Regional haul, heavy-duty trucking operations are good candidates for electrification due to the segment’s relatively short-hauls and return-to-base operations. Many early electric truck deployments have taken place in California, but as the market matures, fleets, utilities, manufacturers, policymakers, charging companies, and other industry stakeholders are seeking assistance to prioritize regions outside California for future deployments of this technology. This guidance report proposes a three-part framework that the industry can use to prioritize regions for electric truck deployments based on technology, need, and support.
Notes: This report is copyrighted and can be accessed through North American Council for Freight Efficiency website.
Evolution of Plug-In Electric Vehicle Charging Infrastructure in the United States
8/1/2020
The U.S. Department of Energy’s Alternative Fuels Data Center (AFDC) has tracked alternative fueling and electric vehicle charging infrastructure in the United States since 1991. This paper explores the history of the AFDC Station Locator, which was launched in 1999, and discusses the growth of electric vehicle supply equipment. It also looks at how electric vehicle drivers access public charging, and evaluates challenges, gaps, and opportunities facing both electric vehicle drivers and the industry as a whole.
Authors: Brown, A.; Lommele, S.; Eger, R.; Schayowitz, A.
SMART Mobility Modeling Workflow Development, Implementation, and Results Capstone Report
7/28/2020
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.
This report summarizes the work of the SMART Mobility Modeling Workflow effort. The SMART Mobility Modeling Workflow was developed to evaluate new transportation technologies such as connectivity, automation, sharing, and electrification through multi-level systems analysis that captures the dynamic interactions between technologies. By integrating multiple models across different levels of fidelity and scale, the Workflow yields insights about the influence of new mobility and vehicle technologies at the system level.
Authors: Rousseau, A.; Sheppard, C.; Auld, J.; Souza, F.; Enam, A.; Freyermuth, V.; Gardner, M.; Garikapati, V.; Needell, Z.; Stinson, M.; Verbas, O.; Wood, E.
SMART Mobility Urban Science Capstone Report
7/23/2020
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.
This report summarizes the work of the Urban Science Pillar. The Urban Science Pillar focuses on maximum-mobility and minimum-energy opportunities associated with emerging transportation and transportation-related technologies specifically within the urban context. Such technologies, often referred to as automated, connected, efficient (or electrified), and shared, have the potential to greatly improve mobility and related quality of life in urban areas.
Authors: Sperling, J.; Duvall, A.; Beck, J.; Henao, A.; Garikapti, V.; Hou, Y.; Romero-Lankao, P.; Wenzel, T.; Waddell, P.; Aziz, H.; Wang, H.; Young, S.
SMART Mobility Connected and Automated Vehicles Capstone Report
7/22/2020
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.
This report summarizes the work of the Connected and Automated Vehicles (CAVs) Pillar. This Pillar investigated the energy, technology, and usage implications of vehicle connectivity and automation and identified efficient CAV solutions.
Authors: Rask,E.; Auld, J.; Bush, B.; Chen,Y.; Freyermuth, V.; Gohlke, D.; Gonder, J.; Greenblatt, J.; Han, J.; Holden, J.; Islam, E.; Javanmardi, M.; Jeong, J.; Karbowski, D.; Kim, N.; Lammert, M.; Leiby, P.; Lin, Z.; Lu, X.; Mohammadian, K.; Parsa, A.; Rios-Torres, J.; Rousseau, A.; Shabanpour, R.; Shladover, S.; Shen, D.; Shirk, M.; Stephens, T.; Sun, B.; Verbas, O.; Zhang, C.