Loading...
Review and Evaluation of Studies on the Use of E15 in Light-Duty Vehicles
10/1/2013
The objective of this study is to review and evaluate research conducted to date applicable to the effects of E15 on Model Year 2001 and newer cars, and to draw objective conclusions based on the entire available dataset. The project team reviewed 43 studies relevant to E15 usage in 2001 and newer model year on-highway automobiles.
Authors: McCormick, R.L., Yanowitz, J., Ratcliff, M., Zigler, B.T.
A Roadmap to Climate-Friendly Cars: 2013
9/1/2013
An electric car is only as good for the climate as the electricity used to power it. And in states that rely heavily on fossil fuels like coal and natural gas for their electricity there are many conventional and plug-in hybrid electric vehicles that are better for the climate than all-electric cars today.
But that is just part of the story. Another critical factor is the carbon emissions generated when a car is manufactured. Emissions from producing the battery and other electrical components create a 10,000 to 40,000-pound carbon debt for electric cars that can only be overcome after tens, or even hundreds of thousands of miles of driving and recharging from clean energy sources.
This comprehensive state-by-state analysis of the climate impacts of the electric car, plug-in hybrid electrics, and high-mileage, gas-powered hybrid cars takes both of these factors into account - the source of energy used to power the car and carbon emissions from vehicle manufacturing.
Authors: Yawitz, D.; Kenward, A.; Larson, D.
Best Practices for Workplace Charging
9/1/2013
This document is a resource for employers and employees interested in launching a workplace charging program at their place of business.
Notes: This publication is copyrighted by Calstart and is accessed at on the Calstart publications page.
Lifecycle Greenhouse Gas Emissions from Different Light-Duty Vehicle and Fuel Pathways: A Synthesis of Recent Research
7/19/2013
Transitioning to a cleaner fleet of advanced vehicles powered by electricity, hydrogen, and advanced biofuels or petroleum products can yield a significant reduction in greenhouse gas emissions and petroleum consumption. A meaningful assessment of the comparative merits of these alternate fuel pathways requires a solid understanding of their technological potential to reduce emissions. Available studies evaluating full lifecycle emissions rely on various assumptions of that potential and yield a wide range of results. This brief summarizes and synthesizes the results of several recent studies and presents the full range of greenhouse gas emission estimates for each type of advanced vehicle and fuel. It also explains the reasons these estimates vary so widely and identifies opportunities for future analyses that use a consistent set of scenarios with transparent assumptions in order to compare the greenhouse gas impacts of fuel and vehicle pathways.
Authors: Nigro, N.; Jiang, S.
Case Study - Liquefied Natural Gas
6/1/2013
As a part of the U.S. Department of Energy's broad effort to develop cleaner transportation technologies that reduce U.S. dependence on imported oil, this study examines advanced 2011 natural gas fueled trucks using liquefied natural gas (LNG) replacing older diesel fueled trucks. The trucks are used 6 days per week in regional city-to-landfill long hauls of incinerator waste with two fills per day. This is a workable fit for the limited range LNG trucks. Reduction of fuel costs and harmful emissions relative to the replaced trucks are significant.
Moving Together in the 21st Century: How Ridesharing Supports Livable Communities
6/1/2013
This white paper is a follow-up to the Volpe Center report for FHWA, "Ridesharing Options Analysis and Practitioners' Toolkit." The white paper provides an update to current ridesharing options and further explores technology and policy developments that make new methods of ridesharing possible. In addition, the report assesses ridesharing as a key contributing factor to supporting livable communities, and in particular, how ridesharing can be part of a "tipping point" in reducing the need for vehicle ownership and demand for parking.
Authors: Kay, M.; McCoy, K.; Lyons, W.M.
Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System
4/8/2013
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. A set of diesel engine production exhaust systems was aged to 150,000 miles. These exhaust systems included a diesel oxidation catalyst, selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ultralow sulfur diesel containing no measureable metals, B20 (a common biodiesel blend) containing sodium, B20 containing potassium, and B20 containing calcium, which were selected to simulate the maximum allowable levels in B100 according to ASTM D6751. Analysis included Federal Test Procedure emissions testing, bench-flow reactor testing of catalyst cores, electron probe microanalysis (EPMA), and measurement of thermo-mechanical properties of the DPFs. EPMA imaging found that the sodium and potassium penetrated into the washcoat, while calcium remained on the surface. Bench-flow reactor experiments were used to measure the standard nitrogen oxide (NOx) conversion, ammonia storage, and ammonia oxidation for each of the aged SCR catalysts. Vehicle emissions tests were conducted with each of the aged catalyst systems using a chassis dynamometer. The vehicle successfully passed the 0.2 gram/mile NOx emission standard with each of the four aged exhaust systems.
Authors: Williams, A.; Burton, J.; McCormick, R. L.; Toops, T.; Wereszczak, A. A.; Fox, E. E.; Lance, M. J.; Cavataio, G.; Dobson, D.; Warner, J.; Brezny, R.; Nguyen, K.; Brookshear, D. W.
Notes: Posted with permission. Presented at the SAE 2013 World Congress and Exhibition, 16-18 April 2013, Detroit, Michigan.
Hydraulic Fracturing and Shale Gas Production: Technology, Impacts, and Policy
4/1/2013
Hydraulic fracturing is a key technique that has enabled the economic production of natural gas from shale deposits, or plays. The development of large-scale shale gas production is changing the U.S. energy market, generating expanded interest in the usage of natural gas in sectors such as electricity generation and transportation. At the same time, there is much uncertainty of the environmental implications of hydraulic fracturing and the rapid expansion of natural gas production from shale plays. The goal of this white paper is to explain the technologies involved in shale gas production, the potential impacts of shale gas production, and the practices and policies currently being developed and implemented to mitigate these impacts.
Authors: Clark, C.; Burnham, A.; Harto, C.; and Horner, R.
Transportation Energy Futures Series: Effects of Travel Reduction and Efficient Driving on Transportation: Energy Use and Greenhouse Gas Emissions
3/1/2013
Since the 1970s, numerous transportation strategies have been formulated to change the behavior of drivers or travelers by reducing trips, shifting travel to more efficient modes, or improving the efficiency of existing modes. This report summarizes findings documented in existing literature to identify strategies with the greatest potential impact. The estimated effects of implementing the most significant and aggressive individual driver behavior modification strategies range from less than 1% to a few percent reduction in transportation energy use and GHG emissions. Combined strategies result in reductions of 7% to 15% by 2030. Pricing, ridesharing, eco-driving, and speed limit reduction/enforcement strategies are widely judged to have the greatest estimated potential effect, but lack the widespread public acceptance needed to accomplish maximum results. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.
Authors: Porter, C. D.; Brown, A.; DeFlorio, J.; McKenzie, E.; Tao, W.; Vimmerstedt, L.
Transportation Energy Futures Study Points to Deep Cuts in Petroleum and Emissions; Analysis Snapshot
3/1/2013
The U.S. transportation sector has the technical potential to eliminate reliance on oil and reduce its greenhouse gas emissions by more than 80 percent by 2050. This sector is currently responsible for 71 percent of the nation's total petroleum use and 33 percent of our total carbon emissions. The EERE Transportation Energy Futures study examines underexplored opportunities to combine strategies to increase the efficiency of transportation modes, manage the demand for transportation, and shift the fuel mix to more sustainable sources necessary to reach these significant outcomes.
Transportation Energy Futures Series: Vehicle Technology Deployment Pathways: An Examination of Timing and Investment Constraints
3/1/2013
Scenarios of new vehicle technology deployment serve various purposes; some will seek to establish plausibility. This report proposes two reality checks for scenarios: (1) implications of manufacturing constraints on timing of vehicle deployment and (2) investment decisions required to bring new vehicle technologies to market. An estimated timeline of 12 to more than 22 years from initial market introduction to saturation is supported by historical examples and based on the product development process. Researchers also consider the series of investment decisions to develop and build the vehicles and their associated fueling infrastructure. A proposed decision tree analysis structure could be used to systematically examine investors' decisions and the potential outcomes, including consideration of cash flow and return on investment. This method requires data or assumptions about capital cost, variable cost, revenue, timing, and probability of success/failure, and would result in a detailed consideration of the value proposition of large investments and long lead times. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.
Authors: Plotkin, S.; Stephens, T.; McManus, W.
Transportation Energy Futures Series: Effects of the Built Environment on Transportation: Energy Use, Greenhouse Gas Emissions, and Other Factors
3/1/2013
Planning initiatives in many regions and communities aim to reduce transportation energy use, decrease emissions, and achieve related environmental benefits by changing land use. This report reviews and summarizes findings from existing literature on the relationship between the built environment and transportation energy use and greenhouse gas emissions, identifying results trends as well as potential future actions. The indirect influence of federal transportation and housing policies, as well as the direct impact of municipal regulation on land use are examined for their effect on transportation patterns and energy use. Special attention is given to the 'four D' factors of density, diversity, design and accessibility. The report concludes that policy-driven changes to the built environment could reduce transportation energy and GHG emissions from less than 1% to as much as 10% by 2050, the equivalent of 16%-18% of present-day urban light-duty-vehicle travel. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored strategies for abating GHGs and reducing petroleum dependence related to transportation.
Authors: Porter, C. D.; Brown, A.; Dunphy, R. T.; Vimmerstedt, L.
Transportation Energy Futures Series: Freight Transportation Demand: Energy-Efficient Scenarios for a Low-Carbon Future
3/1/2013
Freight transportation demand is projected to grow to 27.5 billion tons in 2040, and to nearly 30.2 billion tons in 2050. This report describes the current and future demand for freight transportation in terms of tons and ton-miles of commodities moved by truck, rail, water, pipeline, and air freight carriers. It outlines the economic, logistics, transportation, and policy and regulatory factors that shape freight demand, the trends and 2050 outlook for these factors, and their anticipated effect on freight demand. After describing federal policy actions that could influence future freight demand, the report then summarizes the capabilities of available analytical models for forecasting freight demand. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.
Authors: Grenzeback, L. R.; Brown, A.; Fischer, M. J.; Hutson, N.; Lamm, C. R.; Pei, Y. L.; Vimmerstedt, L.; Vyas, A. D.; Winebrake, J. J.
Transportation Energy Futures Series: Freight Transportation Modal Shares: Scenarios for a Low-Carbon Future
3/1/2013
Truck, rail, water, air, and pipeline modes each serve a distinct share of the freight transportation market. The current allocation of freight by mode is the product of technologic, economic, and regulatory frameworks, and a variety of factors -- price, speed, reliability, accessibility, visibility, security, and safety -- influence mode. Based on a comprehensive literature review, this report considers how analytical methods can be used to project future modal shares and offers insights on federal policy decisions with the potential to prompt shifts to energy-efficient, low-emission modes. There are substantial opportunities to reduce the energy used for freight transportation, but it will be difficult to shift large volumes from one mode to another without imposing considerable additional costs on businesses and consumers. This report explores federal government actions that could help trigger the shifts in modal shares needed to reduce energy consumption and emissions. This is one in a series of reports produced as a result of the Transportation Energy Futures project, a Department of Energy-sponsored multi-agency effort to pinpoint underexplored strategies for reducing GHGs and petroleum dependence related to transportation.
Authors: Brogan, J. J.; Aeppli, A. E.; Beagan, D. F.; Brown, A.; Fischer, M. J.; Grenzeback, L. R.; McKenzie, E.; Vimmerstedt, L.; Vyas, A. D.; Witzke, E.