A Framework to Analyze the Requirements of a Multiport Megawatt-Level Charging Station for Heavy-Duty Electric Vehicles
5/21/2022
Widespread adoption of heavy-duty (HD) electric vehicles (EVs) will soon necessitate the use of megawatt (MW)-scale charging stations to charge the high capacity HD EV battery packs. While higher throughput will maximize revenue-generating operations, at high rates of charging, the station design needs to anticipate possible station traffic, average and peak power demand, and charging/waiting time targets to meet. High-voltage direct current fast charging (DCFC) is an attractive candidate for MW-scale charging stations at the time of this study but there are no precedents for such station design. We present a modeling and data analysis framework to elucidate the dependencies of a MW-scale station operation on vehicle traffic data and station design parameters and how that impacts vehicle electrification. This framework integrates an agent-based charging station model with vehicle schedules obtained through real-world, long-haul vehicle telemetry data analysis to explore the station design and operation space. We present a case study showing the application of this framework to: (i) choose optimal locations for charging infrastructure to enable vehicle electrification, (ii) simulate vehicle charging behavior to create charge demand schedules for MW-scale charging locations, (iii) analyze power/energy requirements for these stations, and (iv) optimize station design and control to increase vehicle throughput. Real-world vehicle travel data is used to generate distributions of vehicle arrival time and state of the charge (SOC) for hypothetical MW-scale charging stations. Monte Carlo simulation is used to explore various design considerations associated with MW-scale charging stations and electric vehicle battery technologies.
Authors: Mishra, P.; Miller, E.; Santhanagopalan, S.; Bennion, K.; Meintz, A.