Loading...
SMART Mobility Urban Science Capstone Report (PDF)
7/23/2020
The U.S. Department of Energy’s Systems and Modeling for Accelerated Research in Transportation (SMART) Mobility Consortium is a multiyear, multi-laboratory collaborative, managed by the Energy Efficient Mobility Systems Program of the Office of Energy Efficiency and Renewable Energy, Vehicle Technologies Office, dedicated to further understanding the energy implications and opportunities of advanced mobility technologies and services. The first three-year research phase of SMART Mobility occurred from 2017 through 2019 and included five research pillars: Connected and Automated Vehicles, Mobility Decision Science, Multi-Modal Freight, Urban Science, and Advanced Fueling Infrastructure. A sixth research thrust integrated aspects of all five pillars to develop a SMART Mobility Modeling Workflow to evaluate new transportation technologies and services at scale.
This report summarizes the work of the Urban Science Pillar. The Urban Science Pillar focuses on maximum-mobility and minimum-energy opportunities associated with emerging transportation and transportation-related technologies specifically within the urban context. Such technologies, often referred to as automated, connected, efficient (or electrified), and shared, have the potential to greatly improve mobility and related quality of life in urban areas.
Authors: Sperling, J.; Duvall, A.; Beck, J.; Henao, A.; Garikapti, V.; Hou, Y.; Romero-Lankao, P.; Wenzel, T.; Waddell, P.; Aziz, H.; Wang, H.; Young, S.
An Overview of Renewable Natural Gas from Biogas (PDF)
7/1/2020
The U.S. Environmental Protection Agency developed this document to provide biogas stakeholders and other interested parties with a resource to promote and potentially assist in the development of renewable natural gas (RNG) projects. This document summarizes existing RNG operational projects in the United States and the potential for growth from the main sources of biogas feedstock. This document provides technical information on how raw biogas is upgraded into RNG and ultimately delivered and used by consumers. The document also addresses barriers, policies and incentives related to RNG project development.
Assessment of Light-Duty Plug-In Electric Vehicles in the United States, 2010-2019 (PDF)
6/1/2020
This report examines properties of plug-in electric vehicles (PEVs) sold in the United States from 2010 to 2019, exploring vehicle sales, miles driven, electricity consumption, petroleum reduction, vehicle manufacturing, and battery production, among other factors. Over 1.4 million PEVs have been sold, driving over 37 billion miles on electricity since 2010, thereby reducing national gasoline consumption by 0.34% in 2019 and 1.4 billion gallons cumulatively through 2019. In 2019, PEVs used 4.1 terawatt-hours of electricity to drive 12.7 billion miles, offsetting 470 million gallons of gasoline. Since 2010, 69% of all PEVs have been assembled in the United States, and over 60 gigawatt-hours of lithium-ion batteries have been installed in vehicles to date.
Authors: Gohlke, D.; Zhou, Y.
Jamaican Domestic Ethanol Fuel Feasibility and Benefits Analysis (PDF)
5/21/2020
The Government of Jamaica asked the National Renewable Energy Laboratory (NREL) to determine if the use of domestically produced ethanol motor fuel could help them achieve their goals to develop its economy and to reduce greenhouse gas (GHG) emissions. The first step was to determine how much ethanol could be used by Jamaican vehicles in blends of 10% (E10- current blend level), 15% (E15), or 25% (E25). All blend levels are feasible and are being used or pursued in multiple countries. Building on projections made by the Johnson et al. (2019) business as usual scenario, the quantity of ethanol to be used in 2030 ranges from 84 million liters in E10 to 209 million liters in E25. All blend levels are assumed to achieve the same volumetric fuel economy because of verified efficiency improvements enabled by increased octane levels.The next step of the analysis was a resource assessment, which found sugarcane to be the most viable source of domestic ethanol for the 2030 timeframe. A theoretical maximum was set at 288 million L/year of sugarcane ethanol under a scenario where the amount of land devoted to sugarcane is returned to its 1960s levels of 60,000 ha and productivity is maximized at 4,800L/ha/yr. Numerous scenarios were run that achieved the needed quantities of ethanol by increasing the hectarage of sugarcane production or the yield from current levels. This theoretical maximum allows for all goal quantities of ethanol to be achieved. Scenarios were laid out whereby required ethanol is produced by hectares of land and yield that Jamaica has achieved in previous years and domestic sugar needs are still met. A GHG impact assessment was then performed for utilizing domestic cane ethanol at the prescribed blend levels. To do this, the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model was used to perform a lifecycle assessment.
Authors: Johnson, C.; Milbrandt, A.; Zhang, Y.; Hardison, R.; Sharpe, A.
Foundations of an Electric Mobility Strategy for the City of Mexicali (PDF)
5/4/2020
The Foundations of an Electric Mobility Strategy for the city of Mexicali aligns with numerous energy, environmental, and transport plans and will help Mexicali meet multiple related goals. Mexicali’s energy mix, with 28% renewables, already enables plugin electric vehicles (PEVs) to reduce the mass of greenhouse gases (GHGs) per km driven 2/3 below that of their conventional counterparts. This GHG benefit will increase should Mexicali take steps to further increase their share of renewables in their electricity supply. Beyond increasing renewables, Mexicali could possibly deploy PEVs so that electric load is added in the right location (depending on further analysis of substations and feeders) and at the right time (between 21:00 and 11:00) in order to minimize grid upgrade costs. There are a handful of charge timing control mechanisms –at various stages of development– that Mexicali could implement. Transport electrification can facilitate mass transit by powering buses, trains, and small vehicles that get people from their homes or work to the transit stations and vice versa. Mexicali could utilize fleets as early PEV adopters in order to gain acceptance and add electric vehicle supply equipment (EVSE). Recommended prioritization of different types of fleets are suggested in this report: transit buses, school buses, airport ground support equipment (GSE), refuse trucks, taxis, shuttle buses, campus vehicles, delivery trucks, utility trucks, and finally semitrailers. There are a handful of policy options that Mexicali could use to incentivize fleets to purchase PEVs, including mandates, economic incentives, energy performance contracts, waivers to access restrictions, electricity discounts, and EVSE requirements in building codes. Mexicali’s taxi fleet was an early adopter of PEVs and had experienced some challenges—mostly related to the insufficient range of the taxis due to hot weather.
Authors: Johnson, C.; Nanayakkara, S.; Cappellucci, J.; Moniot, M.
Public Electric Vehicle Charging Business Models for Retail Site Hosts (PDF)
4/29/2020
As the passenger plug-in electric vehicle (PEV) market grows in the United States, public PEV charging stations will become increasingly important to serve the charging needs of millions of drivers. For retailers, PEV charging stations offer an opportunity to produce new revenue streams or expand on existing ones while also advancing broader efforts to reduce global greenhouse gas emissions. This brief provides an overview of PEV market growth and the role of public charging options, along with the potential benefits to retailers of hosting PEV charging infrastructure.
Authors: Satterfield, C.; Nigro, N.
Development and Demonstration of a Class 6 Range-Extended Electric Vehicle for Commercial Pickup and Delivery Operation
4/14/2020
Range-extended hybrids are an attractive option for medium- and heavy-duty commercial vehicle fleets because they offer the efficiency of an electrified powertrain with the driving range of a conventional diesel powertrain. The vehicle essentially operates as if it was purely electric for most trips, while ensuring that all commercial routes can be completed in any weather conditions or geographic terrain. Fuel use and point-source emissions can be significantly reduced, and in some cases eliminated, as many shorter routes can be fully electrified with this architecture.
Authors: Jeffers, M.A.; Miller, E.; Kelly, K.; Kresse, J.; Li, K.; Dalton, J.; Kader, M.; Frazier, C.
Notes: This report is copyrighted and can be accessed through SAE International in United States website.
Guidebook for Deploying Zero-Emission Transit Buses
4/1/2020
The zero‐emission bus market, including electric buses and fuel cell electric buses, has seen significant growth in recent years. Zero-emission buses do not rely on fossil fuels for operation and have zero harmful tailpipe emissions, improving local air quality. The increase in market interest has also helped decrease product pricing. This guidebook is designed to provide transit agencies with information on current best practices for zero-emission bus deployments and lessons learned from previous deployments, industry experts, and available industry resources.
Authors: Linscott, M.; Posner, A.
Notes: This report is copyrighted and can be accessed through the National Academy of Sciences website.
Right-of-Way Charging: How Cities Can Lead the Way (PDF)
4/1/2020
As transportation electrification accelerates, right-of-way charging, or the installation of electric vehicle chargers in the areas between neighboring properties, will be critical for meeting charging demand. This report outlines the case for right-of-way charging and the strategic approach that cities can take to implement right-of-way charging in their communities, outlining strategic approaches, barriers and challenges for implementation, best practices for designing right-of-way charging programs, and case studies of municipal right-of-way charging projects.
Charging Infrastructure Requirements to Support Electric Ride-Hailing in U.S. Cities
3/24/2020
This working paper assesses the charging infrastructure needs to support the growth of electric ride-hailing in U.S. cities. The analysis quantifies the amount and type of infrastructure needed and specifically analyzes the extent to which electric ride-hailing fleets can take advantage of underutilized public charging infrastructure capacity.
Authors: Nicholas, M.; Slowik, P.; Lutsey, N.
Notes:
This copyrighted publication can be accessed on The International Council on Clean Transportation's website.
Potential Biomass-Based Diesel Production in the United States by 2032
2/28/2020
The U.S. Environmental Protection Agency (EPA) considers the availability of feedstocks for fuel production when determining the yearly volume obligations under the Renewable Fuel Standard. The amount of biomass-based diesel (BBD) that can be produced in the United States without increasing diversion effects on other uses should be one of the crucial factors that the agency considers in future volume rulemakings. This study provides insights for EPA in setting future volumetric obligations for BBD as well as advanced biofuel and total renewable fuel categories.
Authors: Zhou, Y; Baldino, C.; Searle, S.
A Convergence of Public-Private Benefits in Denver: Surveys and Analyses to Inform Urban Mobility-, Energy-, Infrastructure- and Behavior-Related Innovation (PDF)
2/24/2020
Cities, public transit agencies, and new private ride hailing services seek to understand emerging traveler dynamics, the shifting demographics of urban travelers,and new energy-efficient mobility opportunities. This includes exploring how new infrastructure investments, public and private mobility services, and smart-phone mobility apps are reshaping behaviors, demands (e.g. mobility-on-demand services), travel experiences and energy-efficient urban travel preferences. Currently, cities and metropolitan regions are providing and experimenting with many new mobility options, technologies, and personalized information services at the intersection of urban mobility, energy, and infrastructure systems (e.g., new commuter rail). To date, technology alone has not been able to crack the nut of 'creating faster trip times, less congestion, safer streets, and cleaner air for its citizens through fewer cars on the road'. This paper focuses on this gap by offering new concepts and potential for integrated approaches. Accommodating more vehicles miles traveled in cities, without increases in person miles traveled (PMT), could be costly, generating: 1) tremendous demands for new infrastructure, land, road space, materials, and energy; 2) higher traffic fatality risks; and 3) worsening air quality. Therefore, this study focuses on reducing single occupancy vehicle use by enhancing integrated mobility, helping transit and ridehailing increase occupancy in ways that also reduce energy use, and improve quality of life for urban travelers and communities. This study focuses on a survey of urban travelers in Denver, as a representative case study for metropolitan regions experiencing rapid growth, ageing populations, increased urban sprawl, traffic-related delays, and inefficient energy use per PMT.
Authors: Sperling, J.; Duval, A.; Kwasnik, T.; Young, S.
Notes: Presented at the ITS World Congress 2017, 29 October - 2 November 2017, Montreal, Canada
2017 Bioenergy Industry Status Report (PDF)
2/20/2020
This report provides a snapshot of the bioenergy industry status at the end of 2017. The report compliments other annual market reports from the Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy (EERE) offices and is supported by DOE's Bioenergy Technologies Office (BETO). The 2017 Bioenergy Industry Status Report focuses on past year data covering multiple dimensions of the bioenergy industry and does not attempt to make future market projections. The report provides a balanced and unbiased assessment of the industry and associated markets. It is openly available to the public and is intended to compliment International Energy Agency and industry reports with a focus on DOE stakeholder needs.
Authors: Moriarty, K.; Milbrandt, A.; Lewis, J.; Schwab, A.
Assessing Financial Barriers to the Adoption of Electric Trucks (PDF)
2/20/2020
Medium- and heavy-duty electric vehicles (EVs) are a relatively new technology and many freight industry stakeholders lack access to independent analysis to help make informed decisions about electric trucks and charging infrastructure options. This paper assesses the market landscape, challenges, and opportunities for electric truck adoption among major shippers and their transportation partners by performing a total cost of ownership analysis for EVs under a wide range of procurement scenarios and comparing these results with those from an equivalent diesel vehicle procurement.
Authors: Satterfield, C.; Nigro, N.
Focus Forward: 2020 Ethanol Industry Outlook (PDF)
2/3/2020
RFA's Ethanol Industry Outlook is an annual publication for information on America's ethanol industry. It provides thoughtful analysis of current issues facing the industry, along with current facts and statistics about the production and use of fuel ethanol.
Notes:
This copyrighted publication can be accessed on the Renewable Fuels Association website.